ﻻ يوجد ملخص باللغة العربية
Electrically-neutral massive color-singlet and color-octet vector bosons, which are often predicted in Beyond the Standard Model theories, have the potential to be discovered as dijet resonances at the LHC. A color-singlet resonance that has leptophobic couplings needs further investigation to be distinguished from a color-octet one. In previous work, we introduced a method for discriminating between the two kinds of resonances when their couplings are flavor-universal, using measurements of the dijet resonance mass, total decay width and production cross-section. Here, we describe an extension of that method to cover a more general scenario, in which the vector resonances could have flavor non-universal couplings; essentially, we incorporate measurements of the heavy-flavor decays of the resonance into the method. We present our analysis in a model-independent manner for a dijet resonance with mass 2.5-6.0 TeV at the LHC with $sqrt{s}=14$ TeV and integrated luminosities 30, 100, 300 and 1000 ${rm fb}^{-1}$, and show that the measurements of the heavy-flavor decays should allow conclusive identification of the vector boson. Note that our method is generally applicable even for a Z boson with non-Standard invisible decays. We include an appendix of results for various resonance couplings and masses to illustrate how well each observable must be measured to distinguish colorons from Z bosons.
Extending the Standard Model (SM) scalar sector via one or multiple Higgs field(s) in higher representation brings one or more charged Higgs bosons in the spectrum. Some of these gauge representations with appropriate hypercharge can bring up doubly
Many types of physics beyond the standard model include an extended electroweak gauge group. If these extensions are associated with flavor symmetry breaking, the gauge interactions will not be flavor-universal. In this note we update the bounds plac
In a composite model of the weak bosons the p-wave bosons are studied. The state with the lowest mass is identified with the boson, which has been observed at the LHC. Specific properties of the excited bosons are studied, in particular their decays
We investigate the prospects for the discovery of massive hyper-gluons using data from the early runs of the CERN Large Hadron Collider with $sqrt{s} = 7$ TeV and assuming an integrated luminosity of 1 fb$^{-1}$. A phenomenological Lagrangian is adop
The search for heavy Higgs bosons is an essential step in the exploration of the Higgs sector and in probing the Supersymmetric parameter space. This paper discusses the constraints on the M(A) and tan beta parameters derived from the bounds on the d