ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe a unified quantum approach for analyzing the scattering coefficients of superconducting microwave resonators with a variety of geometries. We also generalize the method to a chain of resonators in either hanger- or necklace-type, and reve al interesting transport properties similar to a photonic crystal. It is shown that both the quantum and classical analyses provide consistent results, and they together form a solid basis for analyzing the decoherence effect in a general microwave resonator. These results pave the way for designing and applying superconducting microwave resonators in complex circuits, and should stimulate the interest of distinguishing different decoherence mechanisms of a resonator mode beyond free energy relaxation.
We describe a unified classical approach for analyzing the scattering coefficients of superconducting microwave resonators with a variety of geometries. To fill the gap between experiment and theory, we also consider the influences of small circuit a symmetry and the finite length of the feedlines, and describe a procedure to correct them in typical measurement results. We show that, similar to the transmission coefficient of a hanger-type resonator, the reflection coefficient of a necklace- or bridge-type resonator does also contain a reference point which can be used to characterize the electrical properties of a microwave resonator in a single measurement. Our results provide a comprehensive understanding of superconducting microwave resonators from the design concepts to the characterization details.
We propose a tunable coupler consisting of N fixed-frequency qubits, which can tune and even amplify the effective interaction between two superconducting quantum circuits. The tuning range of the interaction is proportional to N, with a minimum valu e of zero and a maximum that can exceed the physical coupling rates between the coupler and the circuits. The effective coupling rate is determined by the collective magnetic quantum number of the qubit ensemble, which takes only discrete values and is free from collective decay and decoherence. Using single-photon pi-pulses, the coupling rate can be switched between arbitrary choices of the initial and final values within the dynamic range in a single step without going through intermediate values. A cascade of the couplers for amplifying small interactions or weak signals is also discussed. These results should not only stimulate interest in exploring the collective effects in quantum information processing, but also enable development of applications in tuning and amplifying the interactions in a general cavity-QED system.
Quantum Fourier transform (QFT) is a key ingredient of many quantum algorithms where a considerable amount of ancilla qubits and gates are often needed to form a Hilbert space large enough for high-precision results. Qubit recycling reduces the numbe r of ancilla qubits to one but imposes the requirement of repeated measurements and feedforward within the coherence time of the qubits. Moreover, recycling only applies to certain cases where QFT can be carried out in a semi-classical way. Here, we report a novel approach based on two harmonic resonators which form a high-dimensional Hilbert space for the realization of QFT. By employing the all-resonant and perfect state-transfer methods, we develop a protocol that transfers an unknown multi-qubit state to one resonator. QFT is performed by the free evolution of the two resonators with a cross-Kerr interaction. Then, the fully-quantum result can be localized in the second resonator by a projective measurement. Qualitative analysis shows that a 2^10-dimensional QFT can be realized in current superconducting quantum circuits which paves the way for implementing various quantum algorithms in the noisy intermediate-scale quantum (NISQ) era.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا