ترغب بنشر مسار تعليمي؟ اضغط هنا

56 - Pranav Sharma 2020
The goal of serving and delighting customers in a personal and near human like manner is very high on automation agendas of most Enterprises. Last few years, have seen huge progress in Natural Language Processing domain which has led to deployments o f conversational agents in many enterprises. Most of the current industrial deployments tend to use Monolithic Single Agent designs that model the entire knowledge and skill of the Domain. While this approach is one of the fastest to market, the monolithic design makes it very hard to scale beyond a point. There are also challenges in seamlessly leveraging many tools offered by sub fields of Natural Language Processing and Information Retrieval in a single solution. The sub fields that can be leveraged to provide relevant information are, Question and Answer system, Abstractive Summarization, Semantic Search, Knowledge Graph etc. Current deployments also tend to be very dependent on the underlying Conversational AI platform (open source or commercial) , which is a challenge as this is a fast evolving space and no one platform can be considered future proof even in medium term of 3-4 years. Lately,there is also work done to build multi agent solutions that tend to leverage a concept of master agent. While this has shown promise, this approach still makes the master agent in itself difficult to scale. To address these challenges, we introduce LPar, a distributed multi agent platform for large scale industrial deployment of polyglot, diverse and inter-operable agents. The asynchronous design of LPar supports dynamically expandable domain. We also introduce multiple strategies available in the LPar system to elect the most suitable agent to service a customer query.
In this paper, we propose linear operator theoretic framework involving Koopman operator for the data-driven identification of power system dynamics. We explicitly account for noise in the time series measurement data and propose robust approach for data-driven approximation of Koopman operator for the identification of nonlinear power system dynamics. The identified model is used for the prediction of state trajectories in the power system. The application of the framework is illustrated using an IEEE nine bus test system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا