ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive a family of matrix models which encode solutions to the Seiberg-Witten theory in 4 and 5 dimensions. Partition functions of these matrix models are equal to the corresponding Nekrasov partition functions, and their spectral curves are the S eiberg-Witten curves of the corresponding theories. In consequence of the geometric engineering, the 5-dimensional case provides a novel matrix model formulation of the topological string theory on a wide class of non-compact toric Calabi-Yau manifolds. This approach also unifies and generalizes other matrix models, such as the Eguchi-Yang matrix model, matrix models for bundles over $P^1$, and Chern-Simons matrix models for lens spaces, which arise as various limits of our general result.
87 - Piotr Su{l}kowski 2008
We consider two different physical systems for which the basis of the Hilbert space can be parametrized by Young diagrams: free complex fermions and the phase model of strongly correlated bosons. Both systems have natural, well-known deformations par ametrized by a parameter Q: the former one is related to the deformed boson-fermion correspondence introduced by N. Jing, while the latter is the so-called Q-boson, arising also in the context of quantum groups. These deformations are equivalent and can be realized in the same way in the algebra of Hall-Littlewood symmetric functions. Without a deformation, these reduce to Schur functions, which can be used to construct a generating function of plane partitions, reproducing a topological string partition function on $C^3$. We show that a deformation of both systems leads then to a deformed generating function, which reproduces topological string partition function of the conifold, with the deformation parameter Q identified with the size of $P^1$. Similarly, a deformation of the fermion one-point function results in the A-brane partition function on the conifold.
Molecular dynamics studies within a coarse-grained structure based model were used on two similar proteins belonging to the transcarbamylase family to probe the effects in the native structure of a knot. The first protein, N-acetylornithine transcarb amylase, contains no knot whereas human ormithine transcarbamylase contains a trefoil knot located deep within the sequence. In addition, we also analyzed a modified transferase with the knot removed by the appropriate change of a knot-making crossing of the protein chain. The studies of thermally- and mechanically-induced unfolding processes suggest a larger intrinsic stability of the protein with the knot.
We consider N=4 theories on ALE spaces of $A_{k-1}$ type. As is well known, their partition functions coincide with $A_{k-1}$ affine characters. We show that these partition functions are equal to the generating functions of some peculiar classes of partitions which we introduce under the name orbifold partitions. These orbifold partitions turn out to be related to the generalized Frobenius partitions introduced by G. E. Andrews some years ago. We relate the orbifold partitions to the blended partitions and interpret explicitly in terms of a free fermion system.
134 - Piotr Su{l}kowski 2007
This thesis is concerned with a realisation of topological theories in terms of statistical models known as Calabi-Yau crystals. The thesis starts with an introduction and review of topological field and string theories. Subsequently several new resu lts are presented. The main focus of the thesis is on the topological string theory. In this case crystal models correspond to three-dimensional partitions and their relations with the topological vertex theory and knot invariants are studied. Two-dimensional crystal models corresponding to topological gauge theories on ALE spaces are also introduced and analysed. Essential mathematical tools are summarised in appendices.
We perform theoretical studies of stretching of 20 proteins with knots within a coarse grained model. The knots ends are found to jump to well defined sequential locations that are associated with sharp turns whereas in homopolymers they diffuse arou nd and eventually slide off. The waiting times of the jumps are increasingly stochastic as the temperature is raised. Larger knots do not return to their native locations when a protein is released after stretching.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا