ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first calculation at next-to-leading order (NLO) in $alpha_s$ of a fragmentation function into quarkonium whose form at leading order is a nontrivial function of $z$, namely the fragmentation function for a gluon into a spin-singlet S- wave state at leading order in the relative velocity. To calculate the real NLO corrections, we introduce a new subtraction scheme that allows the phase-space integrals to be evaluated in 4 dimensions. We extract all ultraviolet and infrared divergences in the real NLO corrections analytically by calculating the phase-space integrals of the subtraction terms in $4-2epsilon$ dimensions. We also extract the divergences in the virtual NLO corrections analytically, and detail the cancellation of all divergences after renormalization. The NLO corrections have a dramatic effect on the shape of the fragmentation function, and they significantly increase the fragmentation probability.
A new mechanism for heavy quarkonium production in high-energy collisions called the s-channel cut was proposed in 2005 by Lansberg, Cudell, and Kalinovsky. We identify this mechanism physically as the production of a heavy quark and anti-quark that are on-shell followed by their rescattering to produce heavy quarkonium. We point out that in the NRQCD factorization formalism this rescattering mechanism is a contribution to the color-singlet model term at next-to-next-to-leading order in perturbation theory. Its leading contribution to the production rate can be calculated without introducing any additional phenomenological parameters. We calculate the charm-pair rescattering (or s-channel cut) contribution to the production of J/psi at the Tevatron and compare it to estimates by Lansberg et al. using phenomenological models. This contribution competes with the leading-order term in the color-singlet model at large transverse momentum but is significantly smaller than the next-to-leading-order term. We conclude that charm-pair rescattering is not a dominant mechanism for charmonium production in high-energy collisions.
The cross section for inclusive charm production by a low-energy antiproton beam is calculated using the parton model and next-to-leading order perturbative QCD. For an antiproton beam with a momentum of 15 GeV, the charm cross section at next-to-lea ding order in the QCD coupling constant changes by more than an order of magnitude as the charm quark mass is varied from 1.3 to 1.7 GeV. The variations can be reduced by demanding that the same value of the charm quark mass give the measured charm cross sections for fixed-target experiments with a proton beam. The resulting estimate for the charm cross section from a low-energy antiproton beam is large enough to allow the study of charm meson mixing.
We consider the J/psi photo-production data collected at HERA in the light of next-to-leading order predictions for the color-singlet yield and polarization. We find that, while the shapes of inclusive distributions in the transverse momentum and ine lasticity are well reproduced, the experimental rates are larger than those given by the color-singlet contribution alone. Furthermore, the next-to-leading order calculation predicts the J/psis to be mostly longitudinally polarized at high transverse momentum in contrast with the trend of the preliminary data from the ZEUS collaboration.
We update the theoretical predictions for direct Y(nS) hadroproduction in the framework of NRQCD. We show that the next-to-leading order corrections in alpha_s to the color-singlet transition significantly raise the differential cross section at high pT and substantially affect the polarization of the Upsilon. Motivated by the remaining gap between the NLO yield and the cross section measurements at the Tevatron, we evaluate the leading part of the alpha_s^5 contributions, namely those coming from Y(nS) associated with three light partons. The differential color-singlet cross section at alpha_s^5 is in substantial agreement with the data, so that there is no evidence for the need of color-octet contributions. Furthermore, we find that the polarization of the Y(nS) is longitudinal. We also present our predictions for Y(nS) production at the LHC.
73 - P. Artoisenet 2008
I study the direct hadroproduction of Jpsi associated with a charm-quark pair at leading order in alpha_S and v in NRQCD. This process provides an interesting signature that could be studied at the Tevatron. I consider both colour-singlet and colour- octet transitions. I compare our results to the fragmentation approximation and discuss the associated experimental signatures.
We present a simple method to automatically evaluate arbitrary tree-level amplitudes involving the production or decay of a heavy quark pair QQbar in a generic {2S+1}L_J^[1,8] state, i.e., the short distance coefficients appearing in the NRQCD factor ization formalism. Our approach is based on extracting the relevant contributions from the open heavy quark-antiquark amplitudes through an expansion with respect to the quark-antiquark relative momentum and the application of suitable color and spin projectors. To illustrate the capabilities of the method and its implementation in MadGraph a few applications to quarkonium collider phenomenology are presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا