ترغب بنشر مسار تعليمي؟ اضغط هنا

167 - Pierre Calka , J. E. Yukich 2019
We consider the convex hull of the perturbed point process comprised of $n$ i.i.d. points, each distributed as the sum of a uniform point on the unit sphere $S^{d-1}$ and a uniform point in the $d$-dimensional ball centered at the origin and of radiu s $n^{alpha}, alpha in (-infty, infty)$. This model, inspired by the smoothed complexity analysis introduced in computational geometry cite{DGGT,ST}, is a perturbation of the classical random polytope. We show that the perturbed point process, after rescaling, converges in the scaling limit to one of five Poisson point processes according to whether $alpha$ belongs to one of five regimes. The intensity measure of the limit Poisson point process undergoes a transition at the values $alpha = frac{-2} {d -1}$ and $alpha = frac{2} {d + 1}$ and it gives rise to four rescalings for the $k$-face functional on perturbed data. These rescalings are used to establish explicit expectation asymptotics for the number of $k$-dimensional faces of the convex hull of either perturbed binomial or Poisson data. In the case of Poisson input, we establish explicit variance asymptotics and a central limit theorem for the number of $k$-dimensional faces. Finally it is shown that the rescaled boundary of the convex hull of the perturbed point process converges to the boundary of a parabolic hull process.
Consider a planar random point process made of the union of a point (the origin) and of a Poisson point process with a uniform intensity outside a deterministic set surrounding the origin. When the intensity goes to infinity, we show that the Voronoi cell associated with the origin converges from above to a deterministic convex set. We describe this set and give the asymptotics of the expectation of its defect area, defect perimeter and number of vertices. On the way, two intermediary questions are treated. First, we describe the mean characteristics of the Poisson-Voronoi cell conditioned on containing a fixed convex body around the origin and secondly, we show that the nucleus of such cell converges to the Steiner point of the convex body. As in Renyi and Sulankes seminal papers on random convex hulls, the regularity of the convex body has crucial importance. We deal with both the smooth and polygonal cases. Techniques are based notably on accurate estimates of the area of the Voronoi flower and of the support function of the cell containing the origin as well as on an Efron-type relation.
136 - Pierre Calka 2016
Let K be a convex set in R d and let K $lambda$ be the convex hull of a homogeneous Poisson point process P $lambda$ of intensity $lambda$ on K. When K is a simple polytope, we establish scaling limits as $lambda$ $rightarrow$ $infty$ for the boundar y of K $lambda$ in a vicinity of a vertex of K and we give variance asymptotics for the volume and k-face functional of K $lambda$, k $in$ {0, 1, ..., d -- 1}, resolving an open question posed in [18]. The scaling limit of the boundary of K $lambda$ and the variance asymptotics are described in terms of a germ-grain model consisting of cone-like grains pinned to the extreme points of a Poisson point process on R d--1 $times$ R having intensity $sqrt$ de dh dhdv.
Let $K_n$ be the convex hull of i.i.d. random variables distributed according to the standard normal distribution on $R^d$. We establish variance asymptotics as $n to infty$ for the re-scaled intrinsic volumes and $k$-face functionals of $K_n$, $k in {0,1,...,d-1}$, resolving an open problem. Variance asymptotics are given in terms of functionals of germ-grain models having parabolic grains with apices at a Poisson point process on $R^{d-1} times R$ with intensity $e^h dh dv$. The scaling limit of the boundary of $K_n$ as $n to infty$ converges to a festoon of parabolic surfaces, coinciding with that featuring in the geometric construction of the zero viscosity solution to Burgers equation with random input.
90 - Pierre Calka 2013
A homogeneous Poisson-Voronoi tessellation of intensity $gamma$ is observed in a convex body $W$. We associate to each cell of the tessellation two characteristic radii: the inradius, i.e. the radius of the largest ball centered at the nucleus and in cluded in the cell, and the circumscribed radius, i.e. the radius of the smallest ball centered at the nucleus and containing the cell. We investigate the maximum and minimum of these two radii over all cells with nucleus in $W$. We prove that when $gammarightarrowinfty$, these four quantities converge to Gumbel or Weibull distributions up to a rescaling. Moreover, the contribution of boundary cells is shown to be negligible. Such approach is motivated by the analysis of the global regularity of the tessellation. In particular, consequences of our study include the convergence to the simplex shape of the cell with smallest circumscribed radius and an upper-bound for the Hausdorff distance between $W$ and its so-called Poisson-Voronoi approximation.
70 - Pierre Calka 2012
In this paper, we construct a new family of random series defined on $R^D$, indexed by one scaling parameter and two Hurst-like exponents. The model is close to Takagi-Knopp functions, save for the fact that the underlying partitions of $R^D$ are not the usual dyadic meshes but random Voronoi tessellations generated by Poisson point processes. This approach leads us to a continuous function whose random graph is shown to be fractal with explicit and equal box and Hausdorff dimensions. The proof of this main result is based on several new distributional properties of the Poisson-Voronoi tessellation on the one hand, an estimate of the oscillations of the function coupled with an application of a Frostman-type lemma on the other hand. Finally, we introduce two related models and provide in particular a box-dimension calculation for a derived deterministic Takagi-Knopp series with hexagonal bases.
Let $K subset R^d$ be a smooth convex set and let $P_la$ be a Poisson point process on $R^d$ of intensity $la$. The convex hull of $P_la cap K$ is a random convex polytope $K_la$. As $la to infty$, we show that the variance of the number of $k$-dimen sional faces of $K_la$, when properly scaled, converges to a scalar multiple of the affine surface area of $K$. Similar asymptotics hold for the variance of the number of $k$-dimensional faces for the convex hull of a binomial process in $K$.
Schreiber and Yukich [Ann. Probab. 36 (2008) 363-396] establish an asymptotic representation for random convex polytope geometry in the unit ball $mathbb{B}^d, dgeq2$, in terms of the general theory of stabilizing functionals of Poisson point process es as well as in terms of generalized paraboloid growth processes. This paper further exploits this connection, introducing also a dual object termed the paraboloid hull process. Via these growth processes we establish local functional limit theorems for the properly scaled radius-vector and support functions of convex polytopes generated by high-density Poisson samples. We show that direct methods lead to explicit asymptotic expressions for the fidis of the properly scaled radius-vector and support functions. Generalized paraboloid growth processes, coupled with general techniques of stabilization theory, yield Brownian sheet limits for the defect volume and mean width functionals. Finally we provide explicit variance asymptotics and central limit theorems for the k-face and intrinsic volume functionals.
49 - Pierre Calka 2009
The aim of this paper is to give a precise estimate on the tail probability of the visibility function in a germ-grain model: this function is defined as the length of the longest ray starting at the origin that does not intersect an obstacle in a Bo olean model. We proceed in two or more dimensions using coverage techniques. Moreover, convergence results involving a type I extreme value distribution are shown in the two particular cases of small obstacles or a large obstacle-free region.
In a previous work, two of the authors proposed a new proof of a well known convergence result for the scaled elementary connected vacant component in the high intensity Boolean model towards the Crofton cell of the Poisson hyperplane process. In thi s paper, we consider the particular case of the two-dimensional Boolean model where the grains are discs with random radii. We investigate the second-order term in this convergence when the Boolean model and the Poisson line process are coupled on the same probability space. A precise coupling between the Boolean model and the Poisson line process is first established, a result of directional convergence in distribution for the difference of the two sets involved is derived as well.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا