ترغب بنشر مسار تعليمي؟ اضغط هنا

Based on the analytic model of Feshbach resonances in harmonic traps described in Phys. Rev. A 83, 030701 (2011) a Bose-Hubbard model is introduced that provides an accurate description of two atoms in an optical lattice at a Feshbach resonance with only a small number of Bloch bands. The approach circumvents the problem that the eigenenergies in the presence of a delta-like coupling do not converge to the correct energies, if an uncorrelated basis is used. The predictions of the Bose-Hubbard model are compared to non-perturbative calculations for both the stationary states and the time-dependent wavefunction during an acceleration of the lattice potential. For this purpose, a square-well interaction potential is introduced, which allows for a realistic description of Feshbach resonances within non-perturbative single-channel calculations.
A theoretical approach for a non-perturbative dynamical description of two interacting atoms in an optical lattice potential is introduced. The approach builds upon the stationary eigenstates found by a procedure described in Grishkevich et al. [Phys . Rev. A 84, 062710 (2011)]. It allows presently to treat any time-dependent external perturbation of the lattice potential up to quadratic order. Example calculations of the experimentally relevant cases of an acceleration of the lattice and the turning-on of an additional harmonic confinement are presented.
We propose a scheme for quantum computation in optical lattices. The qubits are encoded in the spacial wavefunction of the atoms such that spin decoherence does not influence the computation. Quantum operations are steered by shaking the lattice whil e qubit addressability can be provided with experimentally available techniques of changing the lattice with single-site resolution. Numerical calculations show possible fidelities above 99% with gate times on the order of milliseconds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا