ﻻ يوجد ملخص باللغة العربية
Based on the analytic model of Feshbach resonances in harmonic traps described in Phys. Rev. A 83, 030701 (2011) a Bose-Hubbard model is introduced that provides an accurate description of two atoms in an optical lattice at a Feshbach resonance with only a small number of Bloch bands. The approach circumvents the problem that the eigenenergies in the presence of a delta-like coupling do not converge to the correct energies, if an uncorrelated basis is used. The predictions of the Bose-Hubbard model are compared to non-perturbative calculations for both the stationary states and the time-dependent wavefunction during an acceleration of the lattice potential. For this purpose, a square-well interaction potential is introduced, which allows for a realistic description of Feshbach resonances within non-perturbative single-channel calculations.
We investigate controlled phase separation of a binary Bose-Einstein condensate (BEC) in the proximity of mixed-spin-channel Feshbach resonance in the |F = 1, mF = +1> and |F = 2,mF = -1> states of 87Rb at a magnetic field of 9.10 G. Phase separation
We investigate phase separation of Bose-Einstein condensates (BECs) of two-component atoms and one-component molecules with a homonuclear Feshbach resonance. We develop a full model for dilute atomic and molecular gases including correlation of the F
We present a two-band Bose-Hubbard model which is shown to be minimal in the necessary coupling terms at resonant tunneling conditions. The dynamics of the many-body problem is studied by sweeping the system across an avoided level crossing. The line
We report on the experimental observation of a strongly interacting gas of ultracold two-electron fermions with orbital degree of freedom and magnetically tunable interactions. This realization has been enabled by the demonstration of a novel kind of
An exciting development in the field of correlated systems is the possibility of realizing two-dimensional (2D) phases of quantum matter. For a systems of bosons, an example of strong correlations manifesting themselves in a 2D environment is provide