ترغب بنشر مسار تعليمي؟ اضغط هنا

Methods to generate spin-polarised electronic states in non-magnetic solids are strongly desired to enable all-electrical manipulation of electron spins for new quantum devices. This is generally accepted to require breaking global structural inversi on symmetry. In contrast, here we present direct evidence from spin- and angle-resolved photoemission spectroscopy for a strong spin polarisation of bulk states in the centrosymmetric transition-metal dichalcogenide WSe$_2$. We show how this arises due to a lack of inversion symmetry in constituent structural units of the bulk crystal where the electronic states are localised, leading to enormous spin splittings up to $sim!0.5$ eV, with a spin texture that is strongly modulated in both real and momentum space. As well as providing the first experimental evidence for a recently-predicted `hidden spin polarisation in inversion-symmetric materials, our study sheds new light on a putative spin-valley coupling in transition-metal dichalcogenides, of key importance for using these compounds in proposed valleytronic devices.
Two-dimensional electron gases (2DEGs) in SrTiO$_3$ have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Her e we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the $d$-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital, and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally-enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO$_3$-based 2DEGs, and yield new microscopic insights on their functional properties.
We investigate the bilayer Ruddlesden-Popper iridate Sr$_3$Ir$_2$O$_7$ by temperature-dependent angle-resolved photoemission. We find a narrow-gap correlated insulator, with spectral features indicative of a polaronic ground state, strikingly similar to that observed previously for the parent compounds of the cuprate superconductors. We additionally observe similar behaviour for the single-layer cousin Sr$_2$IrO$_4$, indicating that strong electron-boson coupling dominates the low-energy excitations of this exotic family of materials, and providing a microscopic link between the insulating ground states of the seemingly-disparate 3d cuprates and 5d iridates.
We demonstrate the formation of a two-dimensional electron gas (2DEG) at the $(100)$ surface of the $5d$ transition-metal oxide KTaO$_3$. From angle-resolved photoemission, we find that quantum confinement lifts the orbital degeneracy of the bulk ban d structure and leads to a 2DEG composed of ladders of subband states of both light and heavy carriers. Despite the strong spin-orbit coupling, our measurements provide a direct upper bound for potential Rashba spin splitting of only $Delta{k}_parallelsim0.02$ AA$^{-1}$ at the Fermi level. The polar nature of the KTaO$_3(100)$ surface appears to help mediate formation of the 2DEG as compared to non-polar SrTiO$_3(100)$.
We report a Rashba spin splitting of a two-dimensional electron gas in the topological insulator Bi$_2$Se$_3$ from angle-resolved photoemission spectroscopy. We further demonstrate its electrostatic control, and show that spin splittings can be achie ved which are at least an order-of-magnitude larger than in other semiconductors. Together these results show promise for the miniaturization of spintronic devices to the nanoscale and their operation at room temperature.
We observe apparent hole pockets in the Fermi surfaces of single-layer Bi-based cuprate superconductors from angle-resolved photoemission (ARPES). From detailed low-energy electron diffraction measurements and an analysis of the ARPES polarization-de pendence, we show that these pockets are not intrinsic, but arise from multiple overlapping superstructure replicas of the main and shadow bands. We further demonstrate that the hole pockets reported recently from ARPES [Meng et al, Nature 462, 335 (2009)] have a similar structural origin, and are inconsistent with an intrinsic hole pocket associated with the electronic structure of a doped CuO$_2$ plane. The nature of the Fermi surface topology in the enigmatic pseudogap phase therefore remains an open question.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا