ﻻ يوجد ملخص باللغة العربية
Methods to generate spin-polarised electronic states in non-magnetic solids are strongly desired to enable all-electrical manipulation of electron spins for new quantum devices. This is generally accepted to require breaking global structural inversion symmetry. In contrast, here we present direct evidence from spin- and angle-resolved photoemission spectroscopy for a strong spin polarisation of bulk states in the centrosymmetric transition-metal dichalcogenide WSe$_2$. We show how this arises due to a lack of inversion symmetry in constituent structural units of the bulk crystal where the electronic states are localised, leading to enormous spin splittings up to $sim!0.5$ eV, with a spin texture that is strongly modulated in both real and momentum space. As well as providing the first experimental evidence for a recently-predicted `hidden spin polarisation in inversion-symmetric materials, our study sheds new light on a putative spin-valley coupling in transition-metal dichalcogenides, of key importance for using these compounds in proposed valleytronic devices.
Spin- and angle-resolved photoemission spectroscopy is used to reveal that a large spin polarization is observable in the bulk centrosymmetric transition metal dichalcogenide MoS2. It is found that the measured spin polarization can be reversed by ch
We propose and characterize a new $mathbb{Z}_2$ class of topological semimetals with a vanishing spin--orbit interaction. The proposed topological semimetals are characterized by the presence of bulk one-dimensional (1D) Dirac Line Nodes (DLNs) and t
The spin-orbit coupling (SOC) lifts the band degeneracy that plays a vital role in the search for different topological states, such as topological insulators (TIs) and topological semimetals (TSMs). In TSMs, the SOC can partially gap a degenerate no
Time-resolved scanning Kerr microscopy has been used to directly image the magnetization dynamics of nano-contact (NC) spin-torque vortex oscillators (STVOs) when phase-locked to an injected microwave (RF) current. The Kerr images reveal free layer m
The symmetry-indicators provide valuable information about the topological properties of band structures in real materials. For inversion-symmetric, non-magnetic materials, the pattern of parity eigenvalues of various Kramers-degenerate bands at the