ترغب بنشر مسار تعليمي؟ اضغط هنا

65 - Philip Kaaret 2014
We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors hav e enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band soft X-ray polarimeters based on Bragg reflection. Developments in scintillator and solid-state hard X-ray detectors facilitate construction of both modular, large area Compton scattering polarimeters and compact devices suitable for use with focusing X-ray telescopes.
We report on deep observations of the extended TeV gamma-ray source MGRO J1908+06 made with the VERITAS very high energy (VHE) gamma-ray observatory. Previously, the TeV emission has been attributed to the pulsar wind nebula (PWN) of the Fermi-LAT pu lsar PSR J1907+0602. We detect MGRO J1908+06 at a significance level of 14 standard deviations (14 sigma) and measure a photon index of 2.20 +/- 0.10_stat +/- 0.20_sys. The TeV emission is extended, covering the region near PSR J1907+0602 and also extending towards SNR G40.5--0.5. When fitted with a 2-dimensional Gaussian, the intrinsic extension has a standard deviation of sigma_src = 0.44 +/- 0.02 degrees. In contrast to other TeV PWNe of similar age in which the TeV spectrum softens with distance from the pulsar, the TeV spectrum measured near the pulsar location is consistent with that measured at a position near the rim of G40.5--0.5, 0.33 degrees away.
124 - Philip Kaaret 2014
High mass X-ray binaries (HMXBs) may have had a significant impact on the heating of the intergalactic medium in the early universe. Study of HMXBs in nearby, low metallicity galaxies that are local analogues to early galaxies can help us understand early HMXBs. The total luminosity of HMXB populations is dominated by sources at high luminosities. These sources exhibit X-ray spectra that show curvature above 2 keV and the same is likely true of HMXB populations at high redshifts. The spectral curvature changes the K-correction for X-rays from HMXBs in a manner that weakens the constraints on X-ray emission of early HMXBs obtained from the soft X-ray background. Applied to deep X-ray surveys of star forming galaxies, the modified K-correction suggests a moderate increase in the ratio of X-ray luminosity to star formation rate at intermediate redshifts, z=3-5, and is consistent with a large enhancement at high redshifts, z=6-7.
37 - Philip Kaaret , Hua Feng 2013
We present a measurement of the X-ray spectrum of the luminous X-ray binary in I Zw 18, the blue compact dwarf galaxy with the lowest known metallicity. We find the highest flux yet observed, corresponding to an intrinsic luminosity near 1E40 erg/s e stablishing it as an ultraluminous X-ray source (ULX). The energy spectrum is dominated by disk emission with a weak or absent Compton component and there is no significant timing noise; both are indicative of the thermal state of stellar-mass black hole X-ray binaries and inconsistent with the Compton-dominated state typical of most ULX spectra. A previous measurement of the X-ray spectrum shows a harder spectrum that is well described by a powerlaw. Thus, the binary appears to exhibit spectral states similar to those observed from stellar-mass black hole binaries. If the hard state occurs in the range of luminosities found for the hard state in stellar-mass black hole binaries, then the black hole mass must be at least 85 solar masses. Spectral fitting of the thermal state shows that disk luminosities for which thin disk models are expected to be valid are produced only for relatively high disk inclinations, >= 60 degrees, and rapid black hole spins. We find a_* > 0.98 and M > 154 solar masses for a disk inclination of 60 degrees. Higher inclinations produce higher masses and somewhat lower spins.
178 - Philip Kaaret , Joseph Schmitt , 2011
We measured the X-ray fluxes from an optically-selected sample of blue compact dwarf galaxies (BCDs) with metallicities <0.07 and solar distances less than 15 Mpc. Four X-ray point sources were observed in three galaxies, with five galaxies having no detectable X-ray emission. Comparing X-ray luminosity and star formation rate, we find that the total X-ray luminosity of the sample is more than 10 times greater than expected if X-ray luminosity scales with star formation rate according to the relation found for normal-metallicity star-forming galaxies. However, due to the low number of sources detected, one can exclude the hypothesis that the relation of the X-ray binaries to SFR in low-metalicity BCDs is identical to that in normal galaxies only at the 96.6% confidence level. It has recently been proposed that X-ray binaries were an important source of heating and reionization of the intergalactic medium at the epoch of reionization. If BCDs are analogs to unevolved galaxies in the early universe, then enhanced X-ray binary production in BCDs would suggest an enhanced impact of X-ray binaries on the early thermal history of the universe.
152 - Philip Kaaret , Hua Feng , 2008
We detected a major X-ray outburst from M82 with a duration of 79 days, an average flux of 5E-11 erg cm^-2 s^-1 in the 2-10 keV band, and strong variability. The X-ray spectrum remained hard throughout the outburst. We obtained a Chandra observation during the outburst that shows that the emission arises from the ultraluminous X-ray source X41.4+60. This source has an unabsorbed flux of (5.4 +/- 0.2)E-11 erg cm^-2 s^-1 in the 0.3-8 keV band, equivalent to an isotropic luminosity of 8.5E40 erg/s. The spectrum is adequately fitted with an absorbed power-law with a photon index of 1.55 +/- 0.05. This photon index is very similar to the value of 1.61 +/- 0.06 measured previously while the flux was (2.64 +/- 0.14)E-11 erg cm^-2 s^-1. Thus, the source appears to remain in the hard state even at the highest flux levels observed. The X-ray spectral and timing data available for X41.4+60 are consistent with the source being in a luminous hard state and a black hole mass in the range of one to a few thousand solar masses.
88 - P. Kaaret , A. A. Abdo , J. Arons 2008
This is a report on the findings of the Galactic compact objects working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper is an APS commissioned document, and the full version has also been released and c an be found on astro-ph. This section of the white paper discusses the potential of future ground-based gamma-ray experiments to advance our understanding of the physics of Galactic compact objects including pulsars, pulsar wind nebulae, and X-ray binaries.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا