ﻻ يوجد ملخص باللغة العربية
We report on deep observations of the extended TeV gamma-ray source MGRO J1908+06 made with the VERITAS very high energy (VHE) gamma-ray observatory. Previously, the TeV emission has been attributed to the pulsar wind nebula (PWN) of the Fermi-LAT pulsar PSR J1907+0602. We detect MGRO J1908+06 at a significance level of 14 standard deviations (14 sigma) and measure a photon index of 2.20 +/- 0.10_stat +/- 0.20_sys. The TeV emission is extended, covering the region near PSR J1907+0602 and also extending towards SNR G40.5--0.5. When fitted with a 2-dimensional Gaussian, the intrinsic extension has a standard deviation of sigma_src = 0.44 +/- 0.02 degrees. In contrast to other TeV PWNe of similar age in which the TeV spectrum softens with distance from the pulsar, the TeV spectrum measured near the pulsar location is consistent with that measured at a position near the rim of G40.5--0.5, 0.33 degrees away.
The unidentified TeV source MGRO J1908+06, with emission extending from hundreds of GeV to beyond 100TeV, is one of the most intriguing sources in the Galactic plane. MGRO J1908+06 spatially associates with an IceCube hotspot of neutrino emission. Al
The unidentified TeV gamma-ray source MGRO J1908+06/HESS J1908+063 was observed with the VERITAS Imaging Atmospheric Cherenkov Array during October 2007 and May-June 2008. This extended source is located on the galactic plane at a galactic longitude
The TeV gamma-ray source MGRO J1908+06 is one of the highest-energy sources known, with observed emission by the High Altitude Water Cherenkov (HAWC) Observatory extending well past 100 TeV. The source exhibits both energy-dependent morphology and a
The candidate PeVatron MGRO J1908+06, which shows a hard spectrum beyond 100 TeV, is one of the most peculiar $gamma$-ray sources in the Galactic plane. Its complex morphology and some possible counterparts spatially related with the VHE emission reg
Detecting and studying galactic gamma-ray sources emitting very-high energy photons sheds light on the acceleration and propagation of cosmic rays presumably created in these sources. Currently, there are few sources emitting photons with energies ex