ترغب بنشر مسار تعليمي؟ اضغط هنا

It is proved that the distributions of scaling limits of Continuous Time Random Walks (CTRWs) solve integro-differential equations akin to Fokker-Planck Equations for diffusion processes. In contrast to previous such results, it is not assumed that t he underlying process has absolutely continuous laws. Moreover, governing equations in the backward variables are derived. Three examples of anomalous diffusion processes illustrate the theory.
This paper explicitly computes the transition densities of a spectrally negative stable process with index greater than one, reflected at its infimum. First we derive the forward equation using the theory of sun-dual semigroups. The resulting forward equation is a boundary value problem on the positive half-line that involves a negative Riemann-Liouville fractional derivative in space, and a fractional reflecting boundary condition at the origin. Then we apply numerical methods to explicitly compute the transition density of this space-inhomogeneous Markov process, for any starting point, to any desired degree of accuracy. Finally, we discuss an application to fractional Cauchy problems, which involve a positive Caputo fractional derivative in time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا