ترغب بنشر مسار تعليمي؟ اضغط هنا

Reflected Spectrally Negative Stable Processes and their Governing Equations

122   0   0.0 ( 0 )
 نشر من قبل Peter Straka
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper explicitly computes the transition densities of a spectrally negative stable process with index greater than one, reflected at its infimum. First we derive the forward equation using the theory of sun-dual semigroups. The resulting forward equation is a boundary value problem on the positive half-line that involves a negative Riemann-Liouville fractional derivative in space, and a fractional reflecting boundary condition at the origin. Then we apply numerical methods to explicitly compute the transition density of this space-inhomogeneous Markov process, for any starting point, to any desired degree of accuracy. Finally, we discuss an application to fractional Cauchy problems, which involve a positive Caputo fractional derivative in time.



قيم البحث

اقرأ أيضاً

Scale functions play a central role in the fluctuation theory of spectrally negative Levy processes and often appear in the context of martingale relations. These relations are often complicated to establish requiring excursion theory in favour of It ^o calculus. The reason for the latter is that standard It^o calculus is only applicable to functions with a sufficient degree of smoothness and knowledge of the precise degree of smoothness of scale functions is seemingly incomplete. The aim of this article is to offer new results concerning properties of scale functions in relation to the smoothness of the underlying Levy measure. We place particular emphasis on spectrally negative Levy processes with a Gaussian component and processes of bounded variation. An additional motivation is the very intimate relation of scale functions to renewal functions of subordinators. The results obtained for scale functions have direct implications offering new results concerning the smoothness of such renewal functions for which there seems to be very little existing literature on this topic.
92 - Bo Li , Chunhao Cai 2016
In this paper, we derive the joint Laplace transforms of occupation times until its last passage times as well as its positions. Motivated by Baurdoux [2], the last times before an independent exponential variable are studied. By applying dual argume nts, explicit formulas are derived in terms of new analytical identities from Loeffen et al. [12].
Semi-Markov processes are a generalization of Markov processes since the exponential distribution of time intervals is replaced with an arbitrary distribution. This paper provides an integro-differential form of the Kolmogorovs backward equations for a large class of homogeneous semi-Markov processes, having the form of an abstract Volterra integro-differential equation. An equivalent evolutionary (differential) form of the equations is also provided. Fractional equations in the time variable are a particular case of our analysis. Weak limits of semi-Markov processes are also considered and their corresponding integro-differential Kolmogorovs equations are identified.
In this paper, we provide the spectral decomposition in Hilbert space of the $mathcal{C}_0$-semigroup $P$ and its adjoint $hatP$ having as generator, respectively, the Caputo and the right-sided Riemann-Liouville fractional derivatives of index $1<al pha<2$. These linear operators, which are non-local and non-self-adjoint, appear in many recent studies in applied mathematics and also arise as the infinitesimal generators of some substantial processes such as the reflected spectrally negative $alpha$-stable process. Our approach relies on intertwining relations that we establish between these semigroups and the semigroup of a Bessel type process whose generator is a self-adjoint second order differential operator. In particular, from this commutation relation, we characterize the positive real axis as the continuous point spectrum of $P$ and provide a power series representation of the corresponding eigenfunctions. We also identify the positive real axis as the residual spectrum of the adjoint operator $hatP$ and elucidates its role in the spectral decomposition of these operators. By resorting to the concept of continuous frames, we proceed by investigating the domain of the spectral operators and derive two representations for the heat kernels of these semigroups. As a by-product, we also obtain regularity properties for these latter and also for the solution of the associated Cauchy problem.
This paper describes the structure of solutions to Kolmogorovs equations for nonhomogeneous jump Markov processes and applications of these results to control of jump stochastic systems. These equations were studied by Feller (1940), who clarified in 1945 in the errata to that paper that some of its results covered only nonexplosive Markov processes. We present the results for possibly explosive Markov processes. The paper is based on the invited talk presented by the authors at the International Conference dedicated to the 200th anniversary of the birth of P. L.~Chebyshev.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا