ترغب بنشر مسار تعليمي؟ اضغط هنا

106 - P. Schwab , M. Dzierzawa 2011
Two recent experiments successfully observed Landau levels in the tunneling spectra of the topological insulator Bi2Se3. To mimic the influence of a scanning tunneling microscope tip on the Landau levels we solve the two-dimensional Dirac equation in the presence of a localized electrostatic potential. We find that the STM tip not only shifts the Landau levels, but also suppresses for a realistic choice of parameters the negative branch of Landau levels.
We study the coupled dynamics of spin and charge currents in a two-dimensional electron gas in the transport diffusive regime. For systems with inversion symmetry there are established relations between the spin Hall effect, the anomalous Hall effect and the inverse spin Hall effect. However, in two-dimensional electron gases of semiconductors like GaAs, inversion symmetry is broken so that the standard arguments do not apply. We demonstrate that in the presence of a Rashba type of spin-orbit coupling (broken structural inversion symmetry) the anomalous Hall effect, the spin Hall and inverse spin Hall effect are substantially different effects. Furthermore we discuss the inverse spin Hall effect for a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit coupling; our results agree with a recent experiment.
The frequency-dependent response of a one-dimensional fermion system is investigated using Current Density Functional Theory (CDFT) within the local approximation (LDA). DFT-LDA, and in particular CDFT-LDA, reproduces very well the dispersion of the collective excitations. Unsurprisingly, however, the approximation fails for details of the dynamic response for large wavevectors. In particular, we introduce CDFT for the one-dimensional spinless fermion model with nearest-neighbor interaction, and use CDFT-LDA plus exact (Bethe ansatz) results for the groundstate energy as function of particle density and boundary phase to determine the linear response. The successes and failures of this approach are discussed in detail.
The response of a one-dimensional fermion system is investigated using Density Functional Theory (DFT) within the Local Density Approximation (LDA), and compared with exact results. It is shown that DFT-LDA reproduces surprisingly well some of the ch aracteristic features of the Luttinger liquid, namely the vanishing spectral weight of low energy particle-hole excitations, as well as the dispersion of the collective charge excitations. On the other hand, the approximation fails, even qualitatively, for quantities for which backscattering is important, i.e., those quantities which are crucial for an accurate description of transport. In particular, the Drude weight in the presence of a single impurity is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا