ترغب بنشر مسار تعليمي؟ اضغط هنا

A physical model is presented for a semiconductor electrode of a photoelectrochemical (PEC) cell, accounting for the potential drop in the Helmholtz layer. Hence both band edge pinning and unpinning are naturally included in our description. The mode l is based on the continuity equations for charge carriers and direct charge transfer from the energy bands to the electrolyte. A quantitative calculation of the position of the energy bands and the variation of the quasi-Fermi levels in the semiconductor with respect to the water reduction and oxidation potentials is presented. Calculated current-voltage curves are compared with established analytical models and measurement. Our model calculations are suitable to enhance understanding and improve properties of semiconductors for photoelectrochemical water splitting.
An equilibrium phase diagram for the shape of compressively strained free-hanging films is developed by total strain energy minimization. For small strain gradients {Delta}{epsilon}, the film wrinkles, while for sufficiently large {Delta}{epsilon}, a phase transition from wrinkling to bending occurs. We consider competing relaxation mechanisms for free-hanging films, which have rolled up into tube structures, and we provide an upper limit for the maximum achievable number of tube rotations.
65 - P. Cendula , S. Kiravittaya , 2011
The authors theoretically investigate quantum confinement and transition energies in quantum wells (QWs) asymmetrically positioned in wrinkled nanomembranes. Calculations reveal that the wrinkle profile induces both blue- and redshifts depending on t he lateral position of the QW probed. Relevant radiative transistions include the ground state of the electron (hole) and excited states of the hole (electron). Energy shifts as well as stretchability of the structure are studied as a function of wrinkle amplitude and period. Large tunable bandwidths of up to 70 nm are predicted for highly asymmetric wrinkled QWs.
We investigate the relaxation of rectangular wrinkled thin films intrinsically containing an initial strain gradient. A preferential rolling direction, depending on wrinkle geometry and strain gradient, is theoretically predicted and experimentally v erified. In contrast to typical rolled-up nanomembranes, which bend perpendicular to the longer edge of rectangular patterns, we find a regime where rolling parallel to the long edge of the wrinkled film is favorable. A non-uniform radius of the rolled-up film is well reproduced by elasticity theory and simulations of the film relaxation using a finite element method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا