ترغب بنشر مسار تعليمي؟ اضغط هنا

The generalized Baldin sum rule at finite four-momentum transfer Q^2 is evaluated utilizing a structure function parameterization fit to recent experimental data. The most recent measurements on F_1 from Hall C at Jlab, as well as the F_2 structure f unction data from Hall B at Jlab and SLAC, were used in constructing our parameterization. We find that at Q^2 below 1 GeV^2 the dominant contribution to the electric and magnetic polarizabilities of the nucleon comes from the resonance region.
We present a new dispersive formulation of the gamma-Z box radiative corrections to weak charges of bound protons and neutrons in atomic parity violation (APV) measurements on heavy nuclei such as 133-Cs and 213-Ra. We evaluate for the first time a s mall but important additional correction arising from Pauli blocking of nucleons in a heavy nucleus. Overall, we find a significant shift in the gamma-Z correction to the weak charge of 133-Cs, approximately 4 times larger than the current uncertainty on the value of sin^2(theta_W), but with a reduced error compared to earlier estimates.
We present a new formulation of one of the major radiative corrections to the weak charge of the proton -- that arising from the axial-vector hadron part of the $gamma Z$ box diagram, $Re{rm e}, Box_{gamma Z}^{rm A}$. This formulation, based on dispe rsion relations, relates the $gamma Z$ contributions to moments of the $F_3^{gamma Z}$ interference structure function. It has a clear connection to the pioneering work of Marciano and Sirlin, and enables a systematic approach to improved numerical precision. Using currently available data, the total correction from all intermediate states is $Re{rm e}, Box_{gamma Z}^{rm A} = 0.0044(4)$ at zero energy, which shifts the theoretical estimate of the proton weak charge from $0.0713(8)$ to $0.0705(8)$. The energy dependence of this result, which is vital for interpreting the Q$_{rm weak}$ experiment, is also determined.
The large energy-scale behaviour of the parity and time-reversal violating (PTV) pion-nucleon coupling constant is analyzed in a model combining renormalization-group techniques and the dressing of the PTV vertex with a pion loop. With the strong $pi N N$ vertex as a mixture of the pseudovector and pseudoscalar couplings, we show that depending on the admixture parameter, two qualitatively distinct types of behaviour are obtained for the PTV coupling constant at high energy scales: an asymptotic freedom or a fixed-point. We find a critical value of the admixture parameter which delineates these two scenarios. Several examples of the high-energy scale behaviour of the PTV $pi N N$ constant are considered, corresponding to realistic hadronic models of the strong pion-nucleon interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا