ترغب بنشر مسار تعليمي؟ اضغط هنا

The hydrodynamic evolution of the common envelope phase of a low mass binary composed of a 1.05 Msun red giant and a 0.6 Msun companion has been followed for five orbits of the system using a high resolution method in three spatial dimensions. During the rapid inspiral phase, the interaction of the companion with the red giants extended atmosphere causes about 25% of the common envelope to be ejected from the system, with mass continuing to be lost at the end of the simulation at a rate ~ 2 Msun/yr. In the process the resulting loss of angular momentum and energy reduces the orbital separation by a factor of seven. After this inspiral phase the eccentricity of the orbit rapidly decreases with time. The gravitational drag dominates hydrodynamic drag at all times in the evolution, and the commonly-used Bondi-Hoyle-Lyttleton prescription for estimating the accretion rate onto the companion significantly overestimates the true rate. On scales comparable to the orbital separation, the gas flow in the orbital plane in the vicinity of the two cores is subsonic with the gas nearly corotating with the red giant core and circulating about the red giant companion. On larger scales, 90% of the outflow is contained within 30 degrees of the orbital plane, and the spiral shocks in this material leave an imprint on the density and velocity structure. Of the energy released by the inspiral of the cores, only about 25% goes toward ejection of the envelope.
We present adaptive mesh refinement (AMR) hydrodynamical simulations of the interaction between Type Ia supernovae and their companion stars within the context of the single-degenerate model. Results for 3D red-giant companions without binary evoluti on agree with previous 2D results by Marietta et al. We also consider evolved helium-star companions in 2D. For a range of helium-star masses and initial binary separations, we examine the mass unbound by the interaction and the kick velocity delivered to the companion star. We find that unbound mass versus separation obeys a power law with index between -3.1 and -4.0, consistent with previous results for hydrogen-rich companions. Kick velocity also obeys a power-law relationship with binary separation, but the slope differs from those found for hydrogen-rich companions. Assuming accretion via Roche-lobe overflow, we find that the unbound helium mass is consistent with observational limits. Ablation (shock heating) appears to be more important in removing gas from helium-star companions than from hydrogen-rich ones, though stripping (momentum transfer) dominates in both cases.
We use high-resolution, three-dimensional hydrodynamic simulations to study the hydrodynamic and gravitational interaction between stellar companions embedded within a differentially rotating common envelope. Specifically, we evaluate the contributio ns of the nonaxisymmetric gravitational tides and ram pressure forces to the drag force and, hence, to the dissipation rate and the mass accumulated onto the stellar companion. We find that the gravitational drag dominates the hydrodynamic drag during the inspiral phase, leading to the result that a simple prescription based on a gravitational capture radius formalism significantly underestimates the dissipation rate and overestimates the inspiral decay timescale. Although the rate of mass accretion fluctuates significantly, we observe a secular trend leading to an effective rate of mass accretion which is significantly less than the rate based on a gravitational capture radius. The implications of these results are discussed within the context of accretion of compact objects in the common-envelope phase.
59 - P. M. Ricker 2007
We describe a finite-volume method for solving the Poisson equation on oct-tree adaptive meshes using direct solvers for individual mesh blocks. The method is a modified version of the method presented by Huang and Greengard (2000), which works with finite-difference meshes and does not allow for shared boundaries between refined patches. Our algorithm is implemented within the FLASH code framework and makes use of the PARAMESH library, permitting efficient use of parallel computers. We describe the algorithm and present test results that demonstrate its accuracy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا