ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Chandra X-ray imaging and spectroscopy for 14 quasars in spatially resolved pairs, part of a complete sample of binary quasars with small transverse separations drawn from Sloan Digital Sky Survey (DR6) photometry. We find no significant d ifference in X-ray properties when compared with large control samples of isolated quasars. We present infrared photometry from our observations with SWIRC at the MMT, and from the WISE Preliminary Data Release, and fit simple spectral energy distributions to all 14 QSOs. We find preliminary evidence that substantial contributions from star formation are required, but possibly no more so than for isolated X-ray-detected QSOs. Sensitive searches of the X-ray images for extended emission, and the optical images for optical galaxy excess show that these binary QSOs are not preferentially found in rich cluster environments. While larger binary QSO samples with richer far-IR and sub-millimeter multiwavelength data might better reveal signatures of merging and triggering, optical color-selection of QSO pairs may be biased against such signatures. X-ray and/or variability selection of QSO pairs, while challenging, should be attempted. We present in our Appendix a primer on X-ray flux and luminosity calculations.
103 - Paul J. Green 2010
We present the first luminous, spatially resolved binary quasar that clearly inhabits an ongoing galaxy merger. SDSS J125455.09+084653.9 and SDSS J125454.87+084652.1 (SDSS J1254+0846 hereafter) are two luminous z=0.44 radio quiet quasars, with a radi al velocity difference of just 215 km/s, separated on the sky by 21 kpc in a disturbed host galaxy merger showing obvious tidal tails. The pair was targeted as part of a complete sample of binary quasar candidates with small transverse separations drawn from SDSS DR6 photometry. We present follow-up optical imaging which shows broad, symmetrical tidal arm features spanning some 75 kpc at the quasars redshift. Numerical modeling suggests that the system consists of two massive disk galaxies prograde to their mutual orbit, caught during the first passage of an active merger. This demonstrates rapid black hole growth during the early stages of a merger between galaxies with pre-existing bulges. Neither of the two luminous nuclei show significant instrinsic absorption by gas or dust in our optical or X-ray observations, illustrating that not all merging quasars will be in an obscured, ultraluminous phase. We find that the Eddington ratio for the fainter component B is rather normal, while for the A component L/LEdd is quite (>3sigma) high compared to quasars of similar luminosity and redshift, possibly evidence for strong merger-triggered accretion. More such mergers should be identifiable at higher redshifts using binary quasars as tracers.
201 - Paul J. Green 2008
We study the spectral energy distributions and evolution of a large sample of optically selected quasars from the Sloan Digital Sky Survey (SDSS) that were observed in 323 Chandra images analyzed by the Chandra Multiwavelength Project (ChaMP). Our hi ghest-confidence matched sample includes 1135 X-ray detected quasars in the redshift range 0.2<z<5.4, representing some 36Msec of effective exposure. Spectroscopic redshifts are available for about 1/3 of the detected sample; elsewhere, redshifts are estimated photometrically. With 56 z>3 QSOs detected, we find no evidence for evolution out to z~5 for either the X-ray photon index Gamma or for the ratio of optical/UV to X-ray flux alpha_ox. About 10% of detected QSOs are obscured (Nh>1E22), but the fraction might reach ~1/3 if most non-detections are absorbed. We confirm a significant correlation between alpha_ox and optical luminosity, but it flattens or disappears for fainter AGN alone. Gamma hardens significantly both towards higher X-ray luminosity, and for relatively X-ray loud quasars. These trends may represent a relative increase in non-thermal X-ray emission, and our findings thereby strengthen analogies between Galactic black hole binaries and AGN.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا