ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino oscillation experiments are known to be sensitive to Non-Standard Interactions (NSIs). We extend the NSI formalism to include one-loop effects. We discuss universal effects induced by corrections to the tree level W exchange, as well as non- universal effects that can arise from scalar charged current interactions. We show how the parameters that can be extracted from the experiments are obtained from various loop amplitudes, which include vertex corrections, wave function renormalizations, mass corrections as well as box diagrams. As an illustrative example, we discuss NSIs at one loop in the Minimal Supersymmetric Standard Model (MSSM) with generic lepton flavor violating sources in the soft sector. We argue that the size of one-loop NSIs can be large enough to be probed in future neutrino oscillation experiments.
We perform an extensive study of FCNC and CP Violation within Supersymmetric (SUSY) theories with particular emphasis put on processes governed by b->s transitions and of their correlations with processes governed by b->d transitions, s->d transition s, $D^0-bar D^0$ oscillations, lepton flavour violating decays, electric dipole moments and (g-2)_mu. We first perform a comprehensive model-independent analysis of Delta F=2 observables and we emphasize the usefulness of the R_b-gamma plane in exhibiting transparently various tensions in the present UT analyses. Secondly, we consider a number of SUSY models: the general MSSM, a flavour blind MSSM, the MSSM with Minimal Flavour Violation as well as SUSY flavour models based on abelian and non-abelian flavour symmetries that show representative flavour structures in the soft SUSY breaking terms. We show how the characteristic patterns of correlations among the considered flavour observables allow to distinguish between these different SUSY scenarios. Of particular importance are the correlations between the CP asymmetry S_psi phi and B_s->mu^+mu^-, between the anomalies in S_phi K_S and S_psi phi, between S_phi K_S and d_e, between S_psi phi and (g-2)_mu and also those involving lepton flavour violating decays. In our analysis, the presence of right-handed currents and of the double Higgs penguin contributions to B_s mixing plays a very important role. We propose a DNA-Flavour Test of NP models including Supersymmetry, the Littlest Higgs model with T-parity and the Randall-Sundrum model with custodial protection, with the aim of showing a tool to distinguish between these NP scenarios, once additional data on flavour changing processes become available.
139 - J.Hisano , M.Nagai , P.Paradisi 2009
The Standard Model (SM) predictions for the lepton flavor-violating (LFV) processes like mu->eg are well far from any realistic experimental resolution, thus, the appearance of m->eg at the running MEG experiment would unambiguously point towards a N ew Physics (NP) signal. In this article, we discuss the phenomenological implications in case of observation/improved upper bound on m->eg at the running MEG experiment for supersymmetric (SUSY) scenarios with a see-saw mechanism accounting for the neutrino masses. We outline the role of related observables to m->eg in shedding light on the nature of the SUSY LFV sources providing useful tools i) to reconstruct some fundamental parameters of the neutrino physics and ii) to test whether an underlying SUSY Grand Unified Theory (GUT) is at work. The perspectives for the detection of LFV signals in tau decays are also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا