ترغب بنشر مسار تعليمي؟ اضغط هنا

69 - E. Horne , P.D. Mininni 2013
We study sign changes and scaling laws in the Cartesian components of the velocity and vorticity of rotating turbulence, in the helicity, and in the components of vertically-averaged fields. Data for the analysis is provided by high-resolution direct numerical simulations of rotating turbulence with different forcing functions, with up to 1536^3 grid points, with Reynolds numbers between ~1100 and ~5100, and with moderate Rossby numbers between ~0.06 and ~8. When rotation is negligible, all Cartesian components of the velocity show similar scaling, in agreement with the expected isotropy of the flow. However, in the presence of rotation only the vertical components of the fields show clear scaling laws, with evidence of possible sign singularity in the limit of infinite Reynolds number. Horizontal components of the velocity are smooth and do not display rapid fluctuations for arbitrarily small scales. The vertical velocity and vorticity, as well as the vertically-averaged vertical velocity and vorticity, show the same scaling within error bars, in agreement with theories that predict that these quantities have the same dynamical equation for very strong rotation.
246 - P.D. Mininni , A. Pouquet 2013
We present results from an ensemble of 50 runs of two-dimensional hydrodynamic turbulence with spatial resolution of 2048^2 grid points, and from an ensemble of 10 runs with 4096^2 grid points. All runs in each ensemble have random initial conditions with same initial integral scale, energy, enstrophy, and Reynolds number. When both ensemble- and time-averaged, inverse energy cascade behavior is observed, even in the absence of external mechanical forcing: the energy spectrum at scales larger than the characteristic scale of the flow follows a k^(-5/3) law, with negative flux, together with a k^(-3) law at smaller scales, and a positive flux of enstrophy. The source of energy for this behavior comes from the modal energy around the energy containing scale at t=0. The results shed some light into connections between decaying and forced turbulence, and into recent controversies in experimental studies of two-dimensional and magnetohydrodynamic turbulent flows.
We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong gui de field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data is analyzed computing field increments in several directions perpendicular to the guide field, and building structure functions and probability density functions. In the magnetohydrodynamic limit we recover the usual results with the magnetic field being more intermittent than the velocity field. In the presence of the Hall effect, field fluctuations at scales smaller than the ion skin depth show a substantial decrease in the level of intermittency, with close to monofractal scaling.
We use direct numerical simulations to compute turbulent transport coefficients for passive scalars in turbulent rotating flows. Effective diffusion coefficients in the directions parallel and perpendicular to the rotations axis are obtained by study ing the diffusion of an imposed initial profile for the passive scalar, and calculated by measuring the scalar average concentration and average spatial flux as a function of time. The Rossby and Schmidt numbers are varied to quantify their effect on the effective diffusion. It is find that rotation reduces scalar diffusivity in the perpendicular direction. The perpendicular diffusion can be estimated from mixing length arguments using the characteristic velocities and lengths perpendicular to the rotation axis. Deviations are observed for small Schmidt numbers, for which turbulent transport decreases and molecular diffusion becomes more significant.
We present experimental evidence of statistical conformal invariance in isocontours of fluid thickness in experiments of two-dimensional turbulence using soap films. A Schlieren technique is used to visualize regions of the flow with constant film th ickness, and association of isocontours with Schramm-Lowner evolution (SLE) is used to identify conformal invariance. In experiments where an inverse energy cascade develops, statistical evidence is consistent with such an association. The diffusivity of the associated one-dimensional Brownian process is close to 8/3, a value previously identified in isocontours of vorticity in high-resolution numerical simulations of two-dimensional turbulence (D. Bernard et al., Nature Phys. 2, 124, 2006). In experiments where the inverse energy cascade is not sufficiently developed, no statistical evidence of conformal invariance is found.
266 - P.D. Mininni 2010
This article reviews recent studies of scale interactions in magnetohydrodynamic turbulence. The present day increase of computing power, which allows for the exploration of different configurations of turbulence in conducting flows, and the developm ent of shell-to-shell transfer functions, has led to detailed studies of interactions between the velocity and the magnetic field and between scales. In particular, processes such as induction and dynamo action, the damping of velocity fluctuations by the Lorentz force, or the development of anisotropies, can be characterized at different scales. In this context we consider three different configurations often studied in the literature: mechanically forced turbulence, freely decaying turbulence, and turbulence in the presence of a uniform magnetic field. Each configuration is of interest for different geophysical and astrophysical applications. Local and non-local transfers are discussed for each case. While the transfer between scales of solely kinetic or solely magnetic energy is local, transfers between kinetic and magnetic fields are observed to be local or non-local depending on the configuration. Scale interactions in the cascade of magnetic helicity are also reviewed. Based on the results, the validity of several usual assumptions in hydrodynamic turbulence, such as isotropy of the small scales or universality, is discussed.
We examine long-time properties of the ideal dynamics of three--dimensional flows, in the presence or not of an imposed solid-body rotation and with or without helicity (velocity-vorticity correlation). In all cases the results agree with the isotrop ic predictions stemming from statistical mechanics. No accumulation of excitation occurs in the large scales, even though in the dissipative rotating case anisotropy and accumulation, in the form of an inverse cascade of energy, are known to occur. We attribute this latter discrepancy to the linearity of the term responsible for the emergence of inertial waves. At intermediate times, inertial energy spectra emerge that differ somewhat from classical wave-turbulence expectations, and with a trace of large-scale excitation that goes away for long times. These results are discussed in the context of partial two-dimensionalization of the flow undergoing strong rotation as advocated by several authors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا