ترغب بنشر مسار تعليمي؟ اضغط هنا

High-spin states of $^{40}$K have been populated in the fusion-evaporation reaction $^{12}$C($^{30}$Si,np)$^{40}$K and studied by means of $gamma$-ray spectroscopy techniques using one AGATA triple cluster detector, at INFN - Laboratori Nazionali di Legnaro. Several new states with excitation energy up to 8 MeV and spin up to $10^-$ have been discovered. These new states are discussed in terms of J=3 and T=0 neutron-proton hole pairs. Shell-model calculations in a large model space have shown a good agreement with the experimental data for most of the energy levels. The evolution of the structure of this nucleus is here studied as a function of excitation energy and angular momentum.
29 - P.-A. Soderstrom 2011
In the abundance spectrum of r-process nuclei the most prominent features are the peaks that form when the r-process flow passes through the closed neutron shells. However, there are also other features in the abundance spectrum that can not be expla ined by shell effects, like the peak in the region of the rare-earth nuclei around mass A=160. It has been argued that this peak is related to the deformation maximum of the neutron-rich isotopes. Recently, both experimental and theoretical work has been carried out to study the deformation of neutron-rich rare-earth nuclei and to search for the point of maximum deformation. This work has focused on the nuclei around 170Dy in order to understand the evolution of collectivity in the neutron shell with 82 < N < 126. These investigations will be discussed in terms of the Harris parameters of the Variable Moment of Inertia model. Finally, we will discuss the future possibilities to reach further into the neutron-rich rare-earth region at the new experimental facilities using radioactive beams.
The yrast sequence of the neutron-rich dysprosium isotope 168Dy has been studied using multi-nucleon transfer reactions following collisions between a 460-MeV 82Se beam and a 170Er target. The reaction products were identified using the PRISMA magnet ic spectrometer and the gamma rays detected using the CLARA HPGe-detector array. The 2+ and 4+ members of the previously measured ground state rotational band of 168Dy have been confirmed and the yrast band extended up to 10+. A tentative candidate for the 4+ to 2+ transition in 170Dy was also identified. The data on these nuclei and on the lighter even-even dysprosium isotopes are interpreted in terms of Total Routhian Surface calculations and the evolution of collectivity in the vicinity of the proton-neutron valence product maximum is discussed.
Preliminary results from an experiment aiming at Dy-170. Submitted to the LNL Annual Report 2008.
The next generation of radioactive ion beam facilities, which will give experimental access to many exotic nuclei, are presently being developed. At the same time the next generation of high resolution gamma-ray spectrometers, based on gamma-ray trac king, for studying the structure of these exotic nuclei are being developed. One of the main differences in tracking of $gamma$ rays versus charged particles is that the gamma rays do not deposit their energy continuously in the detector, but in a few discrete steps. Also, in the field of nuclear spectroscopy, the location of the source is mostly well known while the exact interaction position in the detector is the unknown quantity. This makes the challenges of gamma-ray tracking in germanium somewhat different compared to vertexing in silicon detectors. In these proceedings we present the methods for determining the 3D interaction positions in the detector and how these are used to reconstruct the gamma-ray tracks in the AGATA detector array. We also present preliminary simulation results of a proposed in-beam method to measure the interaction position resolution in the germanium detectors.
Discrimination of the detection of fast neutrons and gamma rays in a liquid scintillator detector has been investigated using digital pulse-processing techniques. An experimental setup with a 252Cf source, a BC-501 liquid scintillator detector, and a BaF2 detector was used to collect waveforms with a 100 Ms/s, 14 bit sampling ADC. Three identical ADCs were combined to increase the sampling frequency to 300 Ms/s. Four different digital pulse-shape analysis algorithms were developed and compared to each other and to data obtained with an analogue neutron-gamma discrimination unit. Two of the digital algorithms were based on the charge comparison method, while the analogue unit and the other two digital algorithms were based on the zero-crossover method. Two different figure-of-merit parameters, which quantify the neutron-gamma discrimination properties, were evaluated for all four digital algorithms and for the analogue data set. All of the digital algorithms gave similar or better figure-of-merit values than what was obtained with the analogue setup. A detailed study of the discrimination properties as a function of sampling frequency and bit resolution of the ADC was performed. It was shown that a sampling ADC with a bit resolution of 12 bits and a sampling frequency of 100 Ms/s is adequate for achieving an optimal neutron-gamma discrimination for pulses having a dynamic range for deposited neutron energies of 0.3-12 MeV. An investigation of the influence of the sampling frequency on the time resolution was made. A FWHM of 1.7 ns was obtained at 100 Ms/s.
76 - P.-A. Soderstrom 2008
The MEDLEY setup based at The Svedberg Laboratory (TSL), Uppsala, Sweden has previously been used to measure double-differential cross-sections for elastic nd scattering, as well as light ion production reactions for various nuclei in the interaction with neutrons around 95 MeV. When moved to the new beam line, the first experimental campaign was on light-ion production from Ca at 94 MeV in February 2005. These data sets have been analyzed for proton production in forward and backward angles. The Delta E - Delta E - E technique have been used to identify protons, and a cutoff as low as 2.5 MeV is achieved. Suppression of events induced by neutrons in the low-energy tail of the neutron field is achieved by time-of-flight techniques. The data are normalized relative to elastic np scattering measured in the 20-degree telescope. Results from an accepted neutron spectrum are presented and some methods to correct for events from low energy neutrons are presented and evaluated. The data are compared with calculations using the nuclear code TALYS. It was found that TALYS systematically overestimates the compound part, and underestimates the pre-equilibrium part of the cross-section.
89 - P.-A. Soderstrom 2008
The basic principles of detection of fast neutrons with liquid scintillator detectors are reviewed, together with a real example in the form of the Neutron Wall array. Two of the challenges in neutron detection, discrimination of neutrons and gamma r ays and identification of cross talk between detectors due to neutron scattering, are briefly discussed, as well as possible solutions to these problems. The possibilities of using digital techniques for pulse-shape discrimination are examined. Results from a digital and anal
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا