ترغب بنشر مسار تعليمي؟ اضغط هنا

We present optical and near-infrared (NIR) photometry of 28 gamma-ray bursts (GRBs) detected by the textit{Swift} satellite and rapidly observed by the Reionization and Transients Infrared/Optical (RATIR) camera. We compare the optical flux at fiduci al times of 5.5 and 11 hours after the high-energy trigger to that in the X-ray regime to quantify optical darkness. 46$pm$9 per cent (13/28) of all bursts in our sample and 55$pm$10 per cent (13/26) of long GRBs are optically dark, which is statistically consistently with previous studies. Fitting RATIR optical and NIR spectral energy distributions (SEDs) of 19 GRBs, most (6/7) optically dark GRBs either occur at high-redshift ($z>4.5$) or have a high dust content in their host galaxies ($A_{rm V} > 0.3$). Performing K-S tests, we compare the RATIR sample to those previously presented in the literature, finding our distributions of redshift, optical darkness, host dust extinction and X-ray derived column density to be consistent. The one reported discrepancy is with host galaxy dust content in the BAT6 sample, which appears inconsistent with our sample and other previous literature. Comparing X-ray derived host galaxy hydrogen column densities to host galaxy dust extinction, we find that GRBs tend to occur in host galaxies with a higher metal-to-dust ratio than our own Galaxy, more akin to the Large and Small Magellanic Clouds. Finally, to mitigate time evolution of optical darkness, we measure $beta_{rm OX,rest}$ at a fixed rest frame time, $t_{rm rest}=1.5$ hours and fixed rest frame energies in the X-ray and optical regimes. Choosing to evaluate optical flux at $lambda_{rm rest}=0.25~mu$m, we remove high-redshift as a source of optical darkness, demonstrating that optical darkness must result from either high-redshift, dust content in the host galaxy along the GRB sight line, or a combination of the two.
We study the evolution with redshift of three measures of gamma-ray burst (GRB) duration ($T_{rm 90}$, $T_{rm 50}$ and $T_{rm R45}$) in a fixed rest frame energy band for a sample of 232 Swift/BAT detected GRBs. Binning the data in redshift we demons trate a trend of increasing duration with increasing redshift that can be modelled with a power-law for all three measures. Comparing redshift defined subsets of rest-frame duration reveals that the observed distributions of these durations are broadly consistent with cosmological time dilation. To ascertain if this is an instrumental effect, a similar analysis of Fermi/GBM data for the 57 bursts detected by both instruments is conducted, but inconclusive due to small number statistics. We then investigate under-populated regions of the duration redshift parameter space. We propose that the lack of low-redshift, long duration GRBs is a physical effect due to the sample being volume limited at such redshifts. However, we also find that the high-redshift, short duration region of parameter space suffers from censorship as any Swift GRB sample is fundamentally defined by trigger criteria determined in the observer frame energy band of Swift/BAT. As a result, we find that the significance of any evidence for cosmological time dilation in our sample of duration measures typically reduces to $<2sigma$.
We present a template fitting algorithm for determining photometric redshifts, $z_{rm phot}$, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization And Transients InfraRed (RATIR) camera, this al gorithm accounts for the intrinsic GRB afterglow spectral energy distribution (SED), host dust extinction and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and RATIR photometry of GRB 130606A, finding a range of best fit solutions $5.6 < z_{rm phot} < 6.0$ for models of several host dust extinction laws (none, MW, LMC and SMC), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find our algorithm provides precise measures of $z_{rm phot}$ in the ranges $4 < z_{rm phot} lesssim 8$ and $9 < z_{rm phot} < 10$ and can robustly determine when $z_{rm phot}>4$. Further testing highlights the required caution in cases of highly dust extincted host galaxies. These tests also show that our algorithm does not erroneously find $z_{rm phot} < 4$ when $z_{rm sim}>4$, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.
Due to their highly luminous nature, gamma-ray bursts (GRBs) are useful tools in studying the early Universe (up to z = 10). We consider whether the available subset of Swift high redshift GRBs are unusual when compared to analogous simulations of a bright low redshift sample. By simulating data from the Burst Alert Telescope (BAT; Barthelmy et al. 2005) the light curves of these bright bursts are obtained over an extensive range of redshifts, revealing complicated evolution in properties of the prompt emission such as T90.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا