ترغب بنشر مسار تعليمي؟ اضغط هنا

Given four congruent balls $A, B, C, D$ in $R^{d}$ that have disjoint interior and admit a line that intersects them in the order $ABCD$, we show that the distance between the centers of consecutive balls is smaller than the distance between the cent ers of $A$ and $D$. This allows us to give a new short proof that $n$ interior-disjoint congruent balls admit at most three geometric permutations, two if $nge 7$. We also make a conjecture that would imply that $ngeq 4$ such balls admit at most two geometric permutations, and show that if the conjecture is false, then there is a counter-example of a highly degenerate nature.
A graph drawn in the plane with n vertices is k-fan-crossing free for k > 1 if there are no k+1 edges $g,e_1,...e_k$, such that $e_1,e_2,...e_k$ have a common endpoint and $g$ crosses all $e_i$. We prove a tight bound of 4n-8 on the maximum number of edges of a 2-fan-crossing free graph, and a tight 4n-9 bound for a straight-edge drawing. For k > 2, we prove an upper bound of 3(k-1)(n-2) edges. We also discuss generalizations to monotone graph properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا