ترغب بنشر مسار تعليمي؟ اضغط هنا

Using pulsed optical excitation and read-out along with single phonon counting techniques, we measure the transient back-action, heating, and damping dynamics of a nanoscale silicon optomechanical crystal cavity mounted in a dilution refrigerator at a base temperature of 11mK. In addition to observing a slow (~740ns) turn-on time for the optical-absorption-induced hot phonon bath, we measure for the 5.6GHz `breathing acoustic mode of the cavity an initial phonon occupancy as low as 0.021 +- 0.007 (mode temperature = 70mK) and an intrinsic mechanical decay rate of 328 +- 14 Hz (mechanical Q-factor = 1.7x10^7). These measurements demonstrate the feasibility of using short pulsed measurements for a variety of quantum optomechanical applications despite the presence of steady-state optical heating.
Optical measurements of a nanoscale silicon optomechanical crystal cavity with a mechanical resonance frequency of 3.6GHz are performed at sub-kelvin temperatures. We infer optical-absorption-induced heating and damping of the mechanical resonator fr om measurements of phonon occupancy and motional sideband asymmetry. At the lowest probe power and lowest fridge temperature (10mK), the localized mechanical resonance is found to couple at a rate of 400Hz (Q=9x10^6) to a thermal bath of temperature 270mK. These measurements indicate that silicon optomechanical crystals cooled to millikelvin temperatures should be suitable for a variety of experiments involving coherent coupling between photons and phonons at the single quanta level.
A fully planar two-dimensional optomechanical crystal formed in a silicon microchip is used to create a structure devoid of phonons in the GHz frequency range. A nanoscale photonic crystal cavity is placed inside the phononic bandgap crystal in order to probe the properties of the localized acoustic modes. By studying the trends in mechanical damping, mode density, and optomechanical coupling strength of the acoustic resonances over an array of structures with varying geometric properties, clear evidence of a complete phononic bandgap is shown.
The combination of large per-photon optical force and small motional mass attainable in nanocavity optomechanical systems results in strong dynamical back-action between mechanical motion and the cavity light field. In this work we study the optical control of mechanical motion within two different nanocavity structures, a zipper nanobeam photonic crystal cavity and a double-microdisk whispering-gallery resonator. The strong optical gradient force within these cavities is shown to introduce signifcant optical rigidity into the structure, with the dressed mechanical states renormalized into optically-bright and optically-dark modes of motion. With the addition of internal mechanical coupling between mechanical modes, a form of optically-controlled mechanical transparency is demonstrated in analogy to electromagnetically induced transparency of three-level atomic media. Based upon these measurements, a proposal for coherently transferring RF/microwave signals between the optical field and a long-lived dark mechanical state is described.
Optical forces in guided-wave nanostructures have recently been proposed as an effective means of mechanically actuating and tuning optical components. In this work, we study the properties of a photonic crystal optomechanical cavity consisting of a pair of patterned silicon nitride nanobeams. Internal stresses in the stoichiometric silicon nitride thin-film are used to produce inter-beam slot-gaps ranging from 560 to 40nm. A general pump-probe measurement scheme is described which determines, self-consistently, the contributions of thermo-mechanical, thermo-optic, and radiation pressure effects. For devices with 40nm slot-gap, the optical gradient force is measured to be 134fN per cavity photon for the strongly coupled symmetric cavity supermode, producing a static cavity tuning greater than five times that of either the parasitic thermo-mechanical or thermo-optic effects.
Here we propose and demonstrate an all-optical wavelength-routing approach which uses a tuning mechanism based upon the optical gradient force in a specially-designed nano-optomechanical system. The resulting mechanically-compliant spiderweb resonant or realizes seamless wavelength routing over a range of 3000 times the intrinsic channel width, with a tuning efficiency of 309-GHz/mW, a switching time of less than 200-ns, and 100% channel-quality preservation over the entire tuning range. These results indicate the potential for radiation pressure actuated devices to be used in a variety of photonics applications, such as channel routing/switching, buffering, dispersion compensation, pulse trapping/release, and widely tunable lasers.
In this work we combine the large per-photon optical gradient force with the sensitive feedback of a high quality factor whispering-gallery microcavity. The cavity geometry, consisting of a pair of silica disks separated by a nanoscale gap, shows ext remely strong dynamical backaction, powerful enough to excite giant coherent oscillations even under heavily damped conditions (mechanical Q=4). In vacuum, the threshold for regenerative mechanical oscillation is lowered to an optical input power of only 270-nanoWatts, or roughly 1000 stored cavity photons, and efficient cooling of the mechanical motion is obtained with a temperature compression factor of 13-dB for 4-microWatts of dropped optical input power.
We describe the design, fabrication, and measurement of a cavity opto-mechanical system consisting of two nanobeams of silicon nitride in the near-field of each other, forming a so-called zipper cavity. A photonic crystal patterning is applied to the nanobeams to localize optical and mechanical energy to the same cubic-micron-scale volume. The picrogram-scale mass of the structure, along with the strong per-photon optical gradient force, results in a giant optical spring effect. In addition, a novel damping regime is explored in which the small heat capacity of the zipper cavity results in blue-detuned opto-mechanical damping.
We present a simple measurement and analysis technique to determine the fraction of optical loss due to both radiation (scattering) and linear absorption in microphotonic components. The method is generally applicable to optical materials in which bo th nonlinear and linear absorption are present, and requires only limited knowledge of absolute optical power levels, material parameters, and the structure geometry. The technique is applied to high quality factor (Q=1-5 X 10^6) silicon-on-insulator microdisk resonators. It is determined that linear absorption can account for more than half the total optical loss in the high-Q regime of these devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا