ترغب بنشر مسار تعليمي؟ اضغط هنا

The sensitivity to the mass composition as well as the reconstruction of the energy of the primary particle are explored here by leveraging the features of the radio lateral distribution function. For the purpose of this analysis, a set of events mea sured with the LOPES experiment is reproduced with the latest CoREAS radio simulation code. Based on simulation predictions, a method which exploits the slope of the radio lateral distribution function is developed (Slope Method) and directly applied on measurements. As a result, the possibility to reconstruct both the energy and the depth of the shower maximum of the cosmic ray air shower using radio data and achieving relatively small uncertainties is presented.
The LOPES experiment, a digital radio interferometer located at KIT (Karlsruhe Institute of Technology), obtained remarkable results for the detection of radio emission from extensive air showers at MHz frequencies. Features of the radio lateral dist ribution function (LDF) measured by LOPES are explored in this work for a precise reconstruction of two fundamental air shower parameters: the primary energy and the shower Xmax. The method presented here has been developed on (REAS3-)simulations, and is applied to LOPES measurements. Despite the high human-made noise at the LOPES site, it is possible to reconstruct both the energy and Xmax for individual events. On the one hand, the energy resolution is promising and comparable to the one of the co-located KASCADE-Grande experiment. On the other hand, Xmax values are reconstructed with the LOPES measurements with a resolution of 90 g/cm2 . A precision on Xmax better than 30 g/cm2 is predicted and achievable in a region with a lower human-made noise level.
Measuring the mass composition of ultra-high energy cosmic rays is one of the main tasks in the cosmic rays field. Here we are exploring the composition signature in the coherent electromagnetic emission from extensive air showers, detected in the MH z frequency range. One of the experiments that successfully detects radio events in the frequency band of 40-80 MHz is the LOPES experiment at KIT. It is a digital interferometric antenna array and has the important advantage of taking data in coincidence with the particle detector array KASCADE-Grande. A possible method to look at the composition signature in the radio data, predicted by simulations, concerns the radio lateral distribution function, since its slope is strongly correlated with Xmax. Recent comparison between REAS3 simulations and LOPES data showed a significantly improved agreement in the lateral distribution function and for this reason an analysis on a possible LOPES mass signature through the slope method is promising. Trying to reproduce a realistic case, proton and iron showers are simulated with REAS3 using the LOPES selection information as input parameters. The obtained radio lateral distribution slope is analyzed in detail. The lateral slope method to look at the composition signature in the radio data is shown here and a possible signature of mass composition in the LOPES data is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا