ترغب بنشر مسار تعليمي؟ اضغط هنا

Due to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extra-solar planets is of great relevance. Furt hermore, precise stellar parameters are needed to fully characterize the planet properties. It is thus important to continue the efforts to determine, in the most uniform way possible, the parameters for stars with planets as new discoveries are announced. In this paper we present new precise atmospheric parameters for a sample of 48 stars with planets. We then take the opportunity to present a new catalogue of stellar parameters for FGK and M stars with planets detected by radial velocity, transit, and astrometry programs. Stellar atmospheric parameters and masses for the 48 stars were derived assuming LTE and using high resolution and high signal-to-noise spectra. The methodology used is based on the measurement of equivalent widths for a list of iron lines and making use of iron ionization and excitation equilibrium principles. For the catalog, and whenever possible, we used parameters derived in previous works published by our team, using well defined methodologies for the derivation of stellar atmospheric parameters. This set of parameters amounts to over 65% of all planet host stars known, including more than 90% of all stars with planets discovered through radial velocity surveys. For the remaining targets, stellar parameters were collected from the literature.
We present a study of the stellar parameters and iron abundances of 18 giant stars in 6 open clusters. The analysis was based on high-resolution and high-S/N spectra obtained with the UVES spectrograph (VLT-UT2). The results complement our previous s tudy where 13 clusters were already analyzed. The total sample of 18 clusters is part of a program to search for planets around giant stars. The results show that the 18 clusters cover a metallicity range between -0.23 and +0.23 dex. Together with the derivation of the stellar masses, these metallicities will allow the metallicity and mass effects to be disentangled when analyzing the frequency of planets as a function of these stellar parameters.
134 - N.C. Santos , M. Mayor , W. Benz 2009
We present the discovery of three new giant planets around three metal-deficient stars: HD5388b (1.96M_Jup), HD181720b (0.37M_Jup), and HD190984b (3.1M_Jup). All the planets have moderately eccentric orbits (ranging from 0.26 to 0.57) and long orbita l periods (from 777 to 4885 days). Two of the stars (HD181720 and HD190984) were part of a program searching for giant planets around a sample of ~100 moderately metal-poor stars, while HD5388 was part of the volume-limited sample of the HARPS GTO program. Our discoveries suggest that giant planets in long period orbits are not uncommon around moderately metal-poor stars.
145 - N.C. Santos , C. Lovis , G. Pace 2008
We present a study of accurate stellar parameters and iron abundances for 39 giants and 16 dwarfs in the 13 open clusters IC2714, IC4651, IC4756, NGC2360, NGC2423, NGC2447 (M93), NGC2539, NGC2682 (M67), NGC3114, NGC3680, NGC4349, NGC5822, NGC6633. Th e analysis was done using a set of high-resolution and high-S/N spectra obtained with the UVES spectrograph (VLT). These clusters are currently being searched for planets using precise radial velocities. For all the clusters, the derived average metallicities are close to solar. Interestingly, the values derived seem to depend on the line-list used. This dependence and its implications for the study of chemical abundances in giants stars are discussed. We show that a careful choice of the lines may be crucial for the derivation of metallicities for giant stars on the same metallicity scale as those derived for dwarfs. Finally, we discuss the implications of the derived abundances for the metallicity- and mass-giant planet correlation. We conclude that a good knowledge of the two parameters is necessary to correctly disentangle their influence on the formation of giant planets.
229 - N. C. Santos , S. Udry , F. Bouchy 2008
We present the detection of a 0.47 Jupiter mass planet in a 44-day period eccentric trajectory (e=0.39) orbiting the metal-rich star HD45652. This planet, the seventh giant planet discovered in the context of the ELODIE metallicity-biased planet sear ch program, is also confirmed using higher precision radial-velocities obtained with the CORALIE and SOPHIE spectrographs. The orbital period of HD45652b places it in the middle of the gap in the period distribution of extra-solar planets.
In this paper we present a study of chemical abundances in six star-forming regions. Stellar parameters and metallicities are derived using high-resolution, high S/N spectra of weak-line T-Tauri stars in each region. The results show that nearby star -forming regions have a very small abundance dispersion (only 0.033dex in [Fe/H]). The average metallicity found is slightly below that of the Sun, although compatible with solar once the errors are taken into account. The derived abundances for Si and Ni show that the observed stars have the abundances typical of Galactic thin disk stars of the same metallicity. The impact of these observations is briefly discussed in the context of the Galactic chemical evolution, local inter-stellar medium abundances, and in the origin of metal-rich stars in the solar neighbourhood (namely, stars more likely to harbour planets). The implication for future planet-search programmes around very young, nearby stars is also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا