ترغب بنشر مسار تعليمي؟ اضغط هنا

Most of the objects in the trans-Neptunian belt (TNb) and related populations move in prograde orbits with low eccentricity and inclination. However, the list of icy minor bodies moving in orbits with an inclination above 40 deg. has increased in rec ent years. The origin of these bodies, and in particular of those objects in retrograde orbits, is not well determined, and different scenarios are considered. In this paper, we present new observational and dynamical data of two objects in retrograde orbits, 2008 YB3 and 2005 VD. We find that the surface of these extreme objects is depleted of ices and does not contain the ultra-red matter typical of some Centaurs. Despite small differences, these objects share common colors and spectral characteristics with the Trojans, comet nuclei, and the group of grey Centaurs. All of these populations are supposed to be covered by a mantle of dust responsible for their reddish- to neutral-color. To investigate if the surface properties and dynamical evolution of these bodies are related, we integrate their orbits for 10^(8) years to the past. We find a remarkable difference in their dynamical evolutions: 2005 VD s evolution is dominated by a Kozai resonance with planet Jupiter while that of 2008 YB3 is dominated by close encounters with planets Jupiter and Saturn. Our models suggest that the immediate site of provenance of 2005 VD is the in the Oort cloud, whereas for 2008 YB3 it is in the trans-Neptunian region. Additionally, the study of their residence time shows that 2005 VD has spent a larger lapse of time moving in orbits in the region of the giant planets than 2008 YB3. Together with the small differences in color between these two objects, with 2005 VD being more neutral than 2008 YB3, this fact suggests that the surface of 2005 VD has suffered a higher degree of processing, probably related to cometary activity episodes.
Context: The recent discovery of a group of trans-neptunian objects (TNOs) in a narrow region of the orbital parameter space and with surfaces composed of almost pure water ice, being 2003 EL61 its largest member, promises new and interesting results about the formation and evolution of the trans-neptunian belt (TNb) and the outer Solar System. Aims: The aim of this paper is to obtain information of the surface properties of two members of this group ((24835) 1995 SM55, (120178) 2003 OP32) and three potential members (2003 UZ117, (120347) 2004 SB60 and 2005 UQ513) and to use that in order to confirm or reject their association. Methods: We obtained visible spectra of five TNOs using the 3.58m Telescopio Nazionale Galileo at the Roque de los Muchachos Observatory (La Palma, Spain) Results: The spectra of the five TNOs are featureless within the uncertainties and with colors from slightly blue to red (-2< S<18%/0.1microns). No signatures of any absorption are found. Conclusions: We confirm the association of 1995 SM55 and 2003 OP32 with the group of 2003 EL61 as their spectra are almost identical to that of 2003 EL61. Only one of the three candidates, 2003 UZ117, can be considered as a possible member of the EL61-group, as its visible spectrum is compatible with a spectrum of a surface composed of almost pure water ice and no complex organics. The other two, 2004 SB60 and 2005 UQ513 are red and must be considered as interlopers.
2003 EL61 is the largest member of a group of TNOs with similar orbits and unique spectra (neutral slope in the visible and the deepest water ice absorption bands ever observed in the TNb). Studying the composition of the surface of 2003 EL61 provide s useful constrains on the origin of this particular group of TNOs and on the outer Solar systems history. We present visible and near-infrared spectra of 2003 EL61 obtained with the 4.2m WHT and the 3.6m TNG at the Roque de los Muchachos Observatory (Canary Islands, Spain). Near infrared spectra were obtained at different rotational phases covering almost one complete rotational period. Spectra are fitted using Hapke scattering models and constraints on the surface composition are derived. No significant variations in the spectral slope and in the depth of the water ice absorption bands at different rotational phases are evident, suggesting that the surface of 2003 EL61 is homogeneous. The scattering models show that a 1:1 intimate mixture of crystalline and amorphous water ice is the most probable composition for the surface of this TNO, and constrain the presence of other minor constituents to a maximum of 8% The derived composition suggests that: a) cryovolcanism is unlikely to be the main resurfacing process responsible for the high presence of water ice on the surface of these bodies; b) the surface is older than 10^8 yr. Any catastrophic event, like the collision suggested to be the origin of this population, had to happen at least 10^8 yr ago; c) the surface of 2003 EL61 is depleted of carbon chains. According to the orbital parameters of this population, this makes it a possible source of carbon-depleted Jupiter family comets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا