ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the Surface of 2003 EL61: the largest carbon-depleted object in the trans-neptunian belt

108   0   0.0 ( 0 )
 نشر من قبل Noemi Pinilla-Alonso
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

2003 EL61 is the largest member of a group of TNOs with similar orbits and unique spectra (neutral slope in the visible and the deepest water ice absorption bands ever observed in the TNb). Studying the composition of the surface of 2003 EL61 provides useful constrains on the origin of this particular group of TNOs and on the outer Solar systems history. We present visible and near-infrared spectra of 2003 EL61 obtained with the 4.2m WHT and the 3.6m TNG at the Roque de los Muchachos Observatory (Canary Islands, Spain). Near infrared spectra were obtained at different rotational phases covering almost one complete rotational period. Spectra are fitted using Hapke scattering models and constraints on the surface composition are derived. No significant variations in the spectral slope and in the depth of the water ice absorption bands at different rotational phases are evident, suggesting that the surface of 2003 EL61 is homogeneous. The scattering models show that a 1:1 intimate mixture of crystalline and amorphous water ice is the most probable composition for the surface of this TNO, and constrain the presence of other minor constituents to a maximum of 8% The derived composition suggests that: a) cryovolcanism is unlikely to be the main resurfacing process responsible for the high presence of water ice on the surface of these bodies; b) the surface is older than 10^8 yr. Any catastrophic event, like the collision suggested to be the origin of this population, had to happen at least 10^8 yr ago; c) the surface of 2003 EL61 is depleted of carbon chains. According to the orbital parameters of this population, this makes it a possible source of carbon-depleted Jupiter family comets.

قيم البحث

اقرأ أيضاً

We present results from three world-wide campaigns that resulted in the detections of two single-chord and one multi-chord stellar occultations by the Plutino object (84922) 2003~VS$_2$. From the single-chord occultations in 2013 and 2014 we obtained accurate astrometric positions for the object, while from the multi-chord occultation on November 7th, 2014, we obtained the parameters of the best-fitting ellipse to the limb of the body at the time of occultation. We also obtained short-term photometry data for the body in order to derive its rotational phase during the occultation. The rotational light curve present a peak-to-peak amplitude of 0.141 $pm$ 0.009 mag. This allows us to reconstruct the three-dimensional shape of the body, with principal semi-axes $a = 313.8 pm 7.1$ km, $b = 265.5^{+8.8}_{-9.8}$ km, and $c = 247.3^{+26.6}_{-43.6}$ km, which is not consistent with a Jacobi triaxial equilibrium figure. The derived spherical volume equivalent diameter of $548.3 ^{+29.5}_{-44.6}$ km is about 5% larger than the radiometric diameter of 2003~VS$_2$ derived from Herschel data of $523 pm 35$ km, but still compatible with it within error bars. From those results we can also derive the geometric albedo ($0.123 ^{+0.015}_{-0.014}$) and, under the assumption that the object is a Maclaurin spheroid, the density $rho = 1400^{+1000}_{-300}$ for the plutino. The disappearances and reappearances of the star during the occultations do not show any compelling evidence for a global atmosphere considering a pressure upper limit of about 1 microbar for a pure nitrogen atmosphere, nor secondary features (e.g. rings or satellite) around the main body.
We describe the discovery circumstances and photometric properties of 2000 EB173, now one of the brightest trans-Neptunian objects (TNOs) with opposition magnitude m_R=18.9 and also one of the largest Plutinos, found with the drift-scanning camera of the QUEST Collaboration, attached to the 1-m Schmidt telescope of the National Observatory of Venezuela. We measure B-V = 0.99 +/- 0.14 and V-R = 0.57 +/- 0.05, a red color observed for many fainter TNOs. At our magnitude limit m_R = 20.1 +/- 0.20, our single detection reveals a sky density of 0.015 (+0.034, -0.012) TNOs per deg^2 (the error bars are 68% confidence limits), consistent with fainter surveys showing a cumulative number proportional to 10^0.5m_R. Assuming an inclination distribution of TNOs with FWHM exceeding 30 deg, it is likely that one hundred to several hundred objects brighter than m_R=20.1 remain to be discovered.
Context: The recent discovery of a group of trans-neptunian objects (TNOs) in a narrow region of the orbital parameter space and with surfaces composed of almost pure water ice, being 2003 EL61 its largest member, promises new and interesting results about the formation and evolution of the trans-neptunian belt (TNb) and the outer Solar System. Aims: The aim of this paper is to obtain information of the surface properties of two members of this group ((24835) 1995 SM55, (120178) 2003 OP32) and three potential members (2003 UZ117, (120347) 2004 SB60 and 2005 UQ513) and to use that in order to confirm or reject their association. Methods: We obtained visible spectra of five TNOs using the 3.58m Telescopio Nazionale Galileo at the Roque de los Muchachos Observatory (La Palma, Spain) Results: The spectra of the five TNOs are featureless within the uncertainties and with colors from slightly blue to red (-2< S<18%/0.1microns). No signatures of any absorption are found. Conclusions: We confirm the association of 1995 SM55 and 2003 OP32 with the group of 2003 EL61 as their spectra are almost identical to that of 2003 EL61. Only one of the three candidates, 2003 UZ117, can be considered as a possible member of the EL61-group, as its visible spectrum is compatible with a spectrum of a surface composed of almost pure water ice and no complex organics. The other two, 2004 SB60 and 2005 UQ513 are red and must be considered as interlopers.
We present high signal precision optical reflectance spectra of the large Kuiper belt objects 2005 FY9 and 2003 EL61. The spectrum of 2005 FY9 exhibits strong CH4-ice bands. A comparison between the spectrum and a Hapke model indicates the CH4 bands are shifted 3.25 +/- 2.25A relative to pure CH4-ice, suggesting the presence of another ice component on the surface of 2005 FY9, possibly N2-ice, CO-ice, or Ar. The spectrum of 2003 EL61 is remarkably featureless. There is a hint of an O2-ice band at 5773A; however, this feature needs to be confirmed by future spectroscopic observations of 2003 EL61 with a higher continuum signal precision, sufficient to detect a second weaker O2-ice band at 6275A.
The Haumea family is currently the only identified collisional family in the Kuiper belt. We numerically simulate the long-term dynamical evolution of the family to estimate a lower limit of the familys age and to assess how the population of the fam ily and its dynamical clustering are preserved over Gyr timescales. We find that the family is not younger than 100 Myr, and its age is at least 1 Gyr with 95% confidence. We find that for initial velocity dispersions of 50-400 m/s, approximately 20-45% of the family members are lost to close encounters with Neptune after 3.5 Gyr of orbital evolution. We apply these loss rates to two proposed models for the formation of the Haumea family, a graze-and-merge type collision between two similarly sized, differentiated KBOs or the collisional disruption of a satellite orbiting Haumea. For the graze-and-merge collision model, we calculate that >85% of the expected mass in surviving family members within 150 m/s of the collision has been identified, but that one to two times the mass of the known family members remains to be identified at larger velocities. For the satellite-break-up model, we estimate that the currently identified family members account for ~50% of the expected mass of the family. Taking observational incompleteness into account, the observed number of Haumea family members is consistent with either formation scenario at the 1 sigma level, however both models predict more objects at larger relative velocities (>150 m/s) than have been identified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا