ترغب بنشر مسار تعليمي؟ اضغط هنا

Dielectronic recombination (DR) is the dominant recombination process for most heavy elements in photoionized clouds. Accurate DR rates for a species can be predicted when the positions of autoionizing states are known. Unfortunately such data are no t available for most third and higher-row elements. This introduces an uncertainty that is especially acute for photoionized clouds, where the low temperatures mean that DR occurs energetically through very low-lying autoionizing states. This paper discusses S$^{2+} rightarrow$ S$^+$ DR, the process that is largely responsible for establishing the [S~III]/[S~II] ratio in nebulae. We derive an empirical rate coefficient using a novel method for second-row ions, which do have accurate data. Photoionization models are used to reproduce the [O~III] / [O~II] / [O~I] / [Ne~III] intensity ratios in central regions of the Orion Nebula. O and Ne have accurate atomic data and can be used to derive an empirical S$^{2+} rightarrow$ S$^+$ DR rate coefficient at $sim 10^{4}$~K. We present new calculations of the DR rate coefficient for S$^{2+} rightarrow$ S$^+$ and quantify how uncertainties in the autoionizing level positions affect it. The empirical and theoretical results are combined and we derive a simple fit to the resulting rate coefficient at all temperatures for incorporation into spectral synthesis codes. This method can be used to derive empirical DR rates for other ions, provided that good observations of several stages of ionization of O and Ne are available.
A recent measurement of the dielectronic recombination (DR) of W^20+ [Schippers et al Phys. Rev. A83, 012711 (2011)] found an exceptionally large contribution from near threshold resonances (<1eV). This still affected the Maxwellian rate coefficient at much higher temperatures. The experimental result was found to be a factor 4 or more than that currently in use in the 100-300eV range which is of relevance for modeling magnetic fusion plasmas. We have carried-out DR calculations with AUTOSTRUCTURE which include all significant single electron promotions. Our intermediate coupling (IC) results are more than a factor of 4 larger than our LS-coupling ones at 1eV but still lie a factor 3 below experiment here. If we assume complete (chaotic) mixing of near-threshold autoionizing states then our results come into agreement (to within 20%) with experiment below about 2eV. Our total IC Maxwellian rate coefficients are 50-30% smaller than those based-on experiment over 100-300eV.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا