ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation damage in body-centered cubic (BCC) Fe has been extensively studied by computer simulations to quantify effects of temperature, impinging particle energy, and the presence of extrinsic particles. However, limited investigation has been cond ucted into the effects of mechanical stresses and strain. In a reactor environment, structural materials are often mechanically strained, and an expanded understanding of how this strain affects the generation of defects may be important for predicting microstructural evolution and damage accumulation under such conditions. In this study, we have performed molecular dynamics simulations in which various types of homogeneous strains are applied to BCC Fe and the effect on defect generation is examined. It is found that volume-conserving shear strains yield no statistically significant variations in the stable number of defects created via cascades in BCC Fe. However, strains that result in volume changes are found to produce significant effects on defect generation.
Swept bias experiments carried out on Josephson junctions yield the distributions of the probabilities of early switching from the zero voltage state. Kramers theory of thermally activated escape from a one-dimensional potential is well known to fall short of explaining such experiments when the junctions are at millikelvin temperatures. We propose a simple revision of the theory which is shown to yield extremely good agreement with experimental data.
We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are build on our previously developed stochastic thermost at, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems - a one dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb & Dunweg, show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.
We have developed a model for experiments in which the bias current applied to a Josephson junction is slowly increased from zero until the junction switches from its superconducting zero-voltage state, and the bias value at which this occurs is reco rded. Repetition of such measurements yields experimentally determined probability distributions for the bias current at the moment of escape. Our model provides an explanation for available data on the temperature dependence of these escape peaks. When applied microwaves are included we observe an additional peak in the escape distributions and demonstrate that this peak matches experimental observations. The results suggest that experimentally observed switching distributions, with and without applied microwaves, can be understood within classical mechanics and may not exhibit phenomena that demand an exclusively quantum mechanical interpretation.
We revisit the interpretation of earlier low temperature experiments on Josephson junctions under the influence of applied microwaves. It was claimed that these experiments unambiguously established a quantum phenomenology with discrete levels in sha llow wells of the washboard potential, and macroscopic quantum tunneling. We here apply the previously developed classical theory to a direct comparison with the original experimental observations, and we show that the experimental data can be accurately represented classically. Thus, our analysis questions the necessity of the earlier quantum mechanical interpretation.
We provide an alternative interpretation of recently published experimental results that were represented as demonstrating entanglement between two macroscopic quantum Josephson oscillators. We model the experimental system using the well-established classical equivalent circuit of a resistively and capacitively shunted junction. Simulation results are used to generate the corresponding density matrix, which is strikingly similar to the previously published matrix that has been declared to be an unambiguous demonstration of quantum entanglement. Since our data are generated by a classical model, we therefore submit that state tomography cannot be used to determine absolutely whether or not quantum entanglement has taken place. Analytical arguments are given for why the classical analysis provides an adequate explanation of the experimental results.
An electrical circuit consisting of two capacitively coupled inductive loops, each interrupted by a Josephson junction, is analyzed through the classical RSCJ model. The same circuit has recently been studied experimentally and the results were used to demonstrate quantum mechanical entanglement in the system by observing the correlated states of the two inductive loops after initial microwave perturbations. Our classical analysis shows that the observed phenomenon exists entirely within the classical RSCJ model, and we provide a detailed intuitive description of the transient dynamics responsible for the observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا