ترغب بنشر مسار تعليمي؟ اضغط هنا

Consider the Riemann sum of a smooth compactly supported function h(x) on a polyhedron in R^d, sampled at the points of the lattice Z^d/t. We give an asymptotic expansion when t goes to infinity, writing each coefficient of this expansion as a sum in dexed by the faces f of the polyhedron, where the f-term is the integral over f of a differential operator applied to the function h(x). In particular, if a Euclidean scalar product is chosen, we prove that the differential operator for the face f can be chosen (in a unique way) to involve only normal derivatives to f. Our formulas are valid for a semi-rational polyhedron and a real sampling parameter t, if we allow for step-polynomial coefficients, instead of just constant ones.
We describe a method for computing the highest degree coefficients of a weighted Ehrhart quasi-polynomial for a rational simple polytope.
This paper settles the computational complexity of the problem of integrating a polynomial function f over a rational simplex. We prove that the problem is NP-hard for arbitrary polynomials via a generalization of a theorem of Motzkin and Straus. On the other hand, if the polynomial depends only on a fixed number of variables, while its degree and the dimension of the simplex are allowed to vary, we prove that integration can be done in polynomial time. As a consequence, for polynomials of fixed total degree, there is a polynomial time algorithm as well. We conclude the article with extensions to other polytopes, discussion of other available methods and experimental results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا