ترغب بنشر مسار تعليمي؟ اضغط هنا

How can one detect entanglement between multiple optical paths sharing a single photon? We address this question by proposing a scalable protocol, which only uses local measurements where single photon detection is combined with small displacement op erations. The resulting entanglement witness does not require post-selection, nor assumptions about the photon number in each path. Furthermore, it guarantees that entanglement lies in a subspace with at most one photon per optical path and reveals genuinely multipartite entanglement. We demonstrate its scalability and resistance to loss by performing various experiments with two and three optical paths. We anticipate applications of our results for quantum network certification.
Motivated by very recent experiments, we consider a scenario `a la Bell in which two protagonists test the Clauser-Horne-Shimony-Holt (CHSH) inequality using a photon-pair source based on spontaneous parametric down conversion and imperfect photon de tectors. The conventional wisdom says that (i) if the detectors have unit efficiency, the CHSH violation can reach its maximum quantum value $2sqrt{2}$. To obtain the maximal possible violation, it suffices that the source emits (ii) maximally entangled photon pairs (iii) in two well defined single modes. Through a non-perturabive calculation of non-local correlations, we show that none of these statements are true. By providing the optimal pump parameters, measurement settings and state structure for any detection efficiency and dark count probability, our results give the recipe to close all the loopholes in a Bell test using photon pairs.
We describe a multi-mode quantum memory for propagating microwave photons that combines a solid-state spin ensemble resonantly coupled to a frequency tunable single-mode microwave cavity. We first show that high efficiency mapping of the quantum stat e transported by a free photon to the spin ensemble is possible both for strong and weak coupling between the cavity mode and the spin ensemble. We also show that even in the weak coupling limit unit efficiency and faithful retrieval can be obtained through time reversal inhomogeneous dephasing based on spin echo techniques. This is possible provided that the cavity containing the spin ensemble and the transmission line are impedance matched. We finally discuss the prospects for an experimental implementation using a rare-earth doped crystal coupled to a superconducting resonator.
In device-independent quantum key distribution (DIQKD), the violation of a Bell inequality is exploited to establish a shared key that is secure independently of the internal workings of the QKD devices. An experimental implementation of DIQKD, howev er, is still awaited, since hitherto all optical Bell tests are subject to the detection loophole, making the protocol unsecured. In particular, photon losses in the quantum channel represent a fundamental limitation for DIQKD. Here, we introduce a heralded qubit amplifier based on single-photon sources and linear optics that provides a realistic solution to overcome the problem of channel losses in Bell tests.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا