ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum pumping, in its different forms, is attracting attention from different fields, from fundamental quantum mechanics, to nanotechnology, to superconductivity. We investigate the crossover of quantum pumping from the adiabatic to the anti-adiaba tic regime in the presence of dissipation, and find general and explicit analytical expressions for the pumped current in a minimal model describing a system with the topology of a ring forced by a periodic modulation of frequency omega. The solution allows following in a transparent way the evolution of pumped DC current from much smaller to much larger omega values than the other relevant energy scale, the energy splitting introduced by the modulation. We find and characterize a temperature-dependent optimal value of the frequency for which the pumped current is maximal.
We investigate the structure of the [bmim][Tf2N]/silica interface by simulating the indentation of a thin (4 nm) [bmim][Tf2N] film by a hard nanometric tip. The ionic liquid/silica interface is represented in atomistic detail, while the tip is modell ed by a spherical mesoscopic particle interacting via an effective short-range potential. Plots of the normal force (Fz) on the tip as a function of its distance from the silica surface highlight the effect of weak layering in the ionic liquid structure, as well as the progressive loss of fluidity in approaching the silica surface. The simulation results for Fz are in near-quantitative agreement with new AFM data measured on the same [bmim][Tf2N]/silica interface at comparable thermodynamic conditions.
Computer simulations of (i) a [C12mim][Tf2N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samp les of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two related systems made of (ii) the same [C12mim][Tf2N] adsorbed at a neutral solid surface and (iii) a shorter-chain RTIL ([C4mim][Tf2N]) trapped in the potential well of part i. No in-plane modulation is seen for ii and iii. In case ii, the optimal arrangement of charge and neutral tails is achieved by layering parallel to the surface, while, in case iii, weaker dispersion and packing interactions are unable to bring aliphatic tails together into mesoscopic islands, against overwhelming entropy and Coulomb forces. The onset of in-plane mesophases could greatly affect the properties of long-chain RTILs used as lubricants.
A nonlinear model representing the tribological problem of a thin solid lubricant layer between two sliding periodic surfaces is used to analyze the phenomenon of hysteresis at pinning/depinning around a moving state rather than around a statically p inned state. The cycling of an external driving force F_ext is used as a simple means to destroy and then to recover the dynamically pinned state previously discovered for the lubricant center-of-mass velocity. De-pinning to a quasi-freely sliding state occurs either directly, with a single jump, or through a sequence of discontinuous transitions. The intermediate sliding steps are reminiscent of phase-locked states and stick-slip motion in static friction, and can be interpreted in terms of the appearance of travelling density defects in an otherwise regular arrangement of kinks. Re-pinning occurs more smoothly, through the successive disappearance of different travelling defects. The resulting bistability and multistability regions may also be explored by varying mechanical parameters other than F_ext, e.g. the sliding velocity or the corrugation amplitude of the sliders.
Within the idealized scheme of a 1-dimensional Frenkel-Kontorova-like model, a special quantized sliding state was found for a solid lubricant confined between two periodic layers [PRL 97, 056101 (2006)]. This state, characterized by a nontrivial geo metrically fixed ratio of the mean lubricant drift velocity <v_cm> and the externally imposed translational velocity v_ext, was understood as due to the kinks (or solitons), formed by the lubricant due to incommensuracy with one of the substrates, pinning to the other sliding substrate. A quantized sliding state of the same nature is demonstrated here for a substantially less idealized 2-dimensional model, where atoms are allowed to move perpendicularly to the sliding direction and interact via Lennard-Jones potentials. Clear evidence for quantized sliding at finite temperature is provided, even with a confined solid lubricant composed of multiple (up to 6) lubricant layers. Characteristic backward lubricant motion produced by the presence of anti-kinks is also shown in this more realistic context.
The calculation of self-energy corrections to the electron bands of a metal requires the evaluation of the intraband contribution to the polarizability in the small-q limit. When neglected, as in standard GW codes for semiconductors and insulators, a spurious gap opens at the Fermi energy. Systematic methods to include intraband contributions to the polarizability exist, but require a computationally intensive Fermi-surface integration. We propose a numerically cheap and stable method, based on a fit of the power expansion of the polarizability in the small-q region. We test it on the homogeneous electron gas and on real metals such as sodium and aluminum.
The dragging velocity of a model solid lubricant confined between sliding periodic substrates exhibits a phase transition between two regimes, respectively with quantized and with continuous lubricant center-of-mass velocity. The transition, occurrin g for increasing external driving force F_ext acting on the lubricant, displays a large hysteresis, and has the features of depinning transitions in static friction, only taking place on the fly. Although different in nature, this phenomenon appears isomorphic to a static Aubry depinning transition in a Frenkel-Kontorova model, the role of particles now taken by the moving kinks of the lubricant-substrate interface. We suggest a possible realization in 2D optical lattice experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا