ترغب بنشر مسار تعليمي؟ اضغط هنا

The metallic state of the underdoped high-Tc cuprates has remained an enigma: How may seemingly disconnected Fermi surface segments, observed in zero magnetic field as a result of the opening of a partial gap (the pseudogap), possess conventional qua siparticle properties? How do the small Fermi-surface pockets evidenced by the observation of quantum oscillations (QO) emerge as superconductivity is suppressed in high magnetic fields? Such QO, discovered in underdoped YBa2Cu3O6.5 (Y123) and YBa2Cu4O8 (Y124), signify the existence of a conventional Fermi surface (FS). However, due to the complexity of the crystal structures of Y123 and Y124 (CuO2 double-layers, CuO chains, low structural symmetry), it has remained unclear if the QO are specific to this particular family of cuprates. Numerous theoretical proposals have been put forward to explain the route toward QO, including materials-specific scenarios involving CuO chains and scenarios involving the quintessential CuO2 planes. Here we report the observation of QO in underdoped HgBa2CuO4+{delta} (Hg1201), a model cuprate superconductor with individual CuO2 layers, high tetragonal symmetry, and no CuO chains. This observation proves that QO are a universal property of the underdoped CuO2 planes, and it opens the door to quantitative future studies of the metallic state and of the Fermi-surface reconstruction phenomenon in this structurally simplest cuprate.
The electrodynamic properties of Ba(Fe$_{0.92}$Co$_{0.08})_2$As$_{2}$ and Ba(Fe$_{0.95}$Ni$_{0.05})_As$_{2}$ single crystals have been investigated by reflectivity measurements in a wide frequency range. In the metallic state, the optical conductivit y consists of a broad incoherent background and a narrow Drude-like component which determines the transport properties; only the latter contribution strongly depends on the composition and temperature. This subsystem reveals a $T^2$ behavior in the dc resistivity and scattering rate disclosing a hidden Fermi-liquid behavior in the 122 iron-pnictide family. An extended Drude analysis yields the frequency dependence of the effective mass (with $m^*/m_bapprox 5$ in the static limit) and scattering rate that does not disclose a simple power law. The spectral weight shifts to lower energies upon cooling; a significant fraction is not recovered within the infrared range of frequencies.
The compound HgBa$_2$CuO$_{4+Delta}$ (Hg1201) exhibits a simple tetragonal crystal structure and the highest superconducting transition temperature (T$_c$) among all single Cu-O layer cuprates, with T$_c$ = 97 K (onset) at optimal doping. Due to a la ck of sizable single crystals, experimental work on this very attractive system has been significantly limited. Thanks to a recent breakthrough in crystal growth, such crystals have now become available. Here, we demonstrate that it is possible to identify suitable heat treatment conditions to systematically and uniformly tune the hole concentration of Hg1201 crystals over a wide range, from very underdoped (T$_c$ = 47 K, hole concentration p ~ 0.08) to overdoped (T$_c$ = 64 K, p ~ 0.22). We then present quantitative magnetic susceptibility and DC charge transport results that reveal the very high-quality nature of the studied crystals. Using XPS on cleaved samples, we furthermore demonstrate that it is possible to obtain large surfaces of good quality. These characterization measurements demonstrate that Hg1201 should be viewed as a model high-temperature superconductor, and they provide the foundation for extensive future experimental work.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا