ﻻ يوجد ملخص باللغة العربية
The compound HgBa$_2$CuO$_{4+Delta}$ (Hg1201) exhibits a simple tetragonal crystal structure and the highest superconducting transition temperature (T$_c$) among all single Cu-O layer cuprates, with T$_c$ = 97 K (onset) at optimal doping. Due to a lack of sizable single crystals, experimental work on this very attractive system has been significantly limited. Thanks to a recent breakthrough in crystal growth, such crystals have now become available. Here, we demonstrate that it is possible to identify suitable heat treatment conditions to systematically and uniformly tune the hole concentration of Hg1201 crystals over a wide range, from very underdoped (T$_c$ = 47 K, hole concentration p ~ 0.08) to overdoped (T$_c$ = 64 K, p ~ 0.22). We then present quantitative magnetic susceptibility and DC charge transport results that reveal the very high-quality nature of the studied crystals. Using XPS on cleaved samples, we furthermore demonstrate that it is possible to obtain large surfaces of good quality. These characterization measurements demonstrate that Hg1201 should be viewed as a model high-temperature superconductor, and they provide the foundation for extensive future experimental work.
We report a Cu $K$-edge resonant inelastic x-ray scattering (RIXS) study of charge-transfer excitations in the 2-8 eV range in the structurally simple compound HgBa$_2$CuO$_{4+delta}$ at optimal doping ($T_{rm c} = 96.5 $ K). The spectra exhibit a si
We present an inelastic neutron scattering study of the structurally simple single-layer compound HgBa$_2$CuO$_{4+delta}$ close to optimal doping ($T_c approx 96$ K). A well-defined antiferromagnetic resonance with energy $omega_r = 56$ meV ($approx
High magnetic fields have revealed a surprisingly small Fermi-surface in underdoped cuprates, possibly resulting from Fermi-surface reconstruction due to an order parameter that breaks translational symmetry of the crystal lattice. A crucial issue co
The specific heat $C$ of the single-layer cuprate superconductor HgBa$_2$CuO$_{4 + delta}$ was measured in an underdoped crystal with $T_{rm c} = 72$ K at temperatures down to $2$ K in magnetic fields up to $35$ T, a field large enough to suppress su
The pseudogap phenomenon in cuprates is the most mysterious puzzle in the research of high-temperature superconductivity. In particular, whether the pseudogap is associated with a crossover or phase transition has been a long-standing controversial i