ترغب بنشر مسار تعليمي؟ اضغط هنا

We study, using simulated experiments inspired by thin film magnetic domain patterns, the feasibility of phase retrieval in X-ray diffractive imaging in the presence of intrinsic charge scattering given only photon-shot-noise limited diffraction data . We detail a reconstruction algorithm to recover the samples magnetization distribution under such conditions, and compare its performance with that of Fourier transform holography. Concerning the design of future experiments, we also chart out the reconstruction limits of diffractive imaging when photon- shot-noise and the intensity of charge scattering noise are independently varied. This work is directly relevant to the time-resolved imaging of magnetic dynamics using coherent and ultrafast radiation from X-ray free electron lasers and also to broader classes of diffractive imaging experiments which suffer noisy data, missing data or both.
299 - N. D. Loh , M. Bogan , V. Elser 2010
We reconstructed the 3D Fourier intensity distribution of mono-disperse prolate nano-particles using single-shot 2D coherent diffraction patterns collected at DESYs FLASH facility when a bright, coherent, ultrafast X-ray pulse intercepted individual particles of random, unmeasured orientations. This first experimental demonstration of cryptotomography extended the Expansion-Maximization-Compression (EMC) framework to accommodate unmeasured fluctuations in photon fluence and loss of data due to saturation or background scatter. This work is an important step towards realizing single-shot diffraction imaging of single biomolecules.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا