ترغب بنشر مسار تعليمي؟ اضغط هنا

93 - N. Lundblad , S. Ansari , Y. Guo 2014
We load a Bose-Einstein condensate into a one-dimensional (1D) optical lattice altered through the use of radiofrequency (rf) dressing. The rf resonantly couples the three levels of the $^{87}$Rb $F=1$ manifold and combines with a spin-dependent bare optical lattice to result in adiabatic potentials of variable shape, depth, and spatial frequency content. We choose dressing parameters such that the altered lattice is stable over lifetimes exceeding tens of ms at higher depths than in previous work. We observe significant differences between the BEC momentum distributions of the dressed lattice as compared to the bare lattice, and find general agreement with a 1D band structure calculation informed by the dressing parameters. Previous work using such lattices was limited by very shallow dressed lattices and strong Landau-Zener tunnelling loss between adiabatic potentials, equivalent to failure of the adiabatic criterion. In this work we operate with significantly stronger rf coupling (increasing the avoided-crossing gap between adiabatic potentials), observing dressed lifetimes of interest for optical lattice-based analogue solid-state physics.
152 - N. Lundblad , M. Schlosser , 2009
We demonstrate the cancellation of the differential ac Stark shift of the microwave hyperfine clock transition in trapped $^{87}$Rb atoms. Recent progress in metrology exploits so-called magic wavelengths, whereby an atomic ensemble can be trapped wi th laser light whose wavelength is chosen so that both levels of an optical atomic transition experience identical ac Stark shifts. Similar magic-wavelength techniques are not possible for the microwave hyperfine transitions in the alkalis, due to their simple electronic structure. We show, however, that ac Stark shift cancellation is indeed achievable for certain values of wavelength, polarization, and magnetic field. The cancellation comes at the expense of a small magnetic-field sensitivity. The technique demonstrated here has implications for experiments involving the precise control of optically-trapped neutral atoms.
The establishment of a scalable scheme for quantum computing with addressable and long-lived qubits would be a scientific watershed, harnessing the laws of quantum physics to solve classically intractable problems. The design of many proposed quantum computational platforms is driven by competing needs: isolating the quantum system from the environment to prevent decoherence, and easily and accurately controlling the system with external fields. For example, neutral-atom optical-lattice architectures provide environmental isolation through the use of states that are robust against fluctuating external fields, yet external fields are essential for qubit addressing. Here we demonstrate the selection of individual qubits with external fields, despite the fact that the qubits are in field-insensitive superpositions. We use a spatially inhomogeneous external field to map selected qubits to a different field-insensitive superposition (optical MRI), minimally perturbing unselected qubits, despite the fact that the addressing field is not spatially localized. We show robust single-qubit rotations on neutral-atom qubits located at selected lattice sites. This precise coherent control is an important step forward for lattice-based neutral-atom quantum computation, and is quite generally applicable to state transfer and qubit isolation in other architectures using field-insensitive qubits.
We load cold atoms into an optical lattice dramatically reshaped by radiofrequency (rf) coupling of state-dependent lattice potentials. This rf dressing changes the unit cell of the lattice at a subwavelength scale, such that its curvature and topolo gy departs strongly from that of a simple sinusoidal lattice potential. Radiofrequency dressing has previously been performed at length scales from mm to tens of microns, but not at the single-optical-wavelength scale. At this length scale significant coupling between adiabatic potentials leads to nonadiabatic transitions, which we measure as a function of lattice depth and dressing frequency and amplitude. We also investigate the dressing by measuring changes in the momentum distribution of the dressed states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا