ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of $lambda/4$ structure in a low-loss radiofrequency-dressed optical lattice

129   0   0.0 ( 0 )
 نشر من قبل Nathan Lundblad
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We load a Bose-Einstein condensate into a one-dimensional (1D) optical lattice altered through the use of radiofrequency (rf) dressing. The rf resonantly couples the three levels of the $^{87}$Rb $F=1$ manifold and combines with a spin-dependent bare optical lattice to result in adiabatic potentials of variable shape, depth, and spatial frequency content. We choose dressing parameters such that the altered lattice is stable over lifetimes exceeding tens of ms at higher depths than in previous work. We observe significant differences between the BEC momentum distributions of the dressed lattice as compared to the bare lattice, and find general agreement with a 1D band structure calculation informed by the dressing parameters. Previous work using such lattices was limited by very shallow dressed lattices and strong Landau-Zener tunnelling loss between adiabatic potentials, equivalent to failure of the adiabatic criterion. In this work we operate with significantly stronger rf coupling (increasing the avoided-crossing gap between adiabatic potentials), observing dressed lifetimes of interest for optical lattice-based analogue solid-state physics.



قيم البحث

اقرأ أيضاً

Radiofrequency (RF)-dressed potentials are a promising technique for manipulating atomic mixtures, but so far little work has been undertaken to understand the collisions of atoms held within these traps. In this work, we dress a mixture of 85Rb and 87Rb with RF radiation, characterize the inelastic loss that occurs, and demonstrate species-selective manipulations. Our measurements show the loss is caused by two-body 87Rb+85Rb collisions, and we show the inelastic rate coefficient varies with detuning from the RF resonance. We explain our observations using quantum scattering calculations, which give reasonable agreement with the measurements. The calculations consider magnetic fields both perpendicular to the plane of RF polarization and tilted with respect to it. Our findings have important consequences for future experiments that dress mixtures with RF fields.
We load cold atoms into an optical lattice dramatically reshaped by radiofrequency (rf) coupling of state-dependent lattice potentials. This rf dressing changes the unit cell of the lattice at a subwavelength scale, such that its curvature and topolo gy departs strongly from that of a simple sinusoidal lattice potential. Radiofrequency dressing has previously been performed at length scales from mm to tens of microns, but not at the single-optical-wavelength scale. At this length scale significant coupling between adiabatic potentials leads to nonadiabatic transitions, which we measure as a function of lattice depth and dressing frequency and amplitude. We also investigate the dressing by measuring changes in the momentum distribution of the dressed states.
Ultracold polar molecules, with their long-range electric dipolar interactions, offer a unique platform for studying correlated quantum many-body phenomena such as quantum magnetism. However, realizing a highly degenerate quantum gas of molecules wit h a low entropy per particle has been an outstanding experimental challenge. In this paper, we report the synthesis of a low entropy molecular quantum gas by creating molecules at individual sites of a three-dimensional optical lattice that is initially loaded from a low entropy mixture of K and Rb quantum gases. We make use of the quantum statistics and interactions of the initial atom gases to load into the optical lattice, simultaneously and with good spatial overlap, a Mott insulator of bosonic Rb atoms and a single-band insulator of fermionic K atoms. Then, using magneto-association and optical state transfer, we efficiently produce ground-state molecules in the lattice at those sites that contained one Rb and one K atom. The achieved filling fraction of 25% indicates an entropy as low as $2.2,k_B$ per molecule. This low-entropy molecular quantum gas opens the door to novel studies of transport and entanglement propagation in a many-body system with long-range dipolar interactions.
We present the first experimental demonstration of a multiple-radiofrequency dressed potential for the configurable magnetic confinement of ultracold atoms. We load cold $^{87}$Rb atoms into a double well potential with an adjustable barrier height, formed by three radiofrequencies applied to atoms in a static quadrupole magnetic field. Our multiple-radiofrequency approach gives precise control over the double well characteristics, including the depth of individual wells and the height of the barrier, and enables reliable transfer of atoms between the available trapping geometries. We have characterised the multiple-radiofrequency dressed system using radiofrequency spectroscopy, finding good agreement with the eigenvalues numerically calculated using Floquet theory. This method creates trapping potentials that can be reconfigured by changing the amplitudes, polarizations and frequencies of the applied dressing fields, and easily extended with additional dressing frequencies.
The production of molecules from dual species atomic quantum gases has enabled experiments that employ molecules at nanoKelvin temperatures. As a result, every degree of freedom of these molecules is in a well-defined quantum state and exquisitely co ntrolled. These ultracold molecules open a new world of precision quantum chemistry in which quantum statistics, quantum partial waves, and even many-body correlations can play important roles. Moreover, to investigate the strongly correlated physics of many interacting molecular dipoles, we can mitigate lossy chemical reactions by controlling the dimensionality of the system using optical lattices formed by interfering laser fields. In a full three-dimensional optical lattice, chemistry can be turned on or off by tuning the lattice depth, which allows us to configure an array of long-range interacting quantum systems with rich internal structure. Such a system represents an excellent platform for gaining fundamental insights to complex materials based on quantum simulations and also for quantum information processing in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا