ترغب بنشر مسار تعليمي؟ اضغط هنا

An anisotropic model for the fabrication of annealed and reverse proton exchange waveguides in lithium niobate is presented. We characterized the anisotropic diffusion properties of proton exchange, annealing and reverse proton exchange in Z-cut and X-cut substrates using planar waveguides. Using this model we fabricated high quality channel waveguides with propagation losses as low as 0.086 dB/cm and a coupling efficiency with optical fiber of 90% at 1550 nm. The splitting ratio of a set of directional couplers is predicted with an accuracy of +- 0.06.
Optical interferometry is amongst the most sensitive techniques for precision measurement. By increasing the light intensity a more precise measurement can usually be made. However, in some applications the sample is light sensitive. By using entangl ed states of light the same precision can be achieved with less exposure of the sample. This concept has been demonstrated in measurements of fixed, known optical components. Here we use two-photon entangled states to measure the concentration of the blood protein bovine serum albumin (BSA) in an aqueous buffer solution. We use an opto-fluidic device that couples a waveguide interferometer with a microfluidic channel. These results point the way to practical applications of quantum metrology to light sensitive samples.
We demonstrate photon-pair generation in a reverse proton exchanged waveguide fabricated on a periodically poled magnesium doped stoichiometric lithium tantalate substrate. Detected pairs are generated via a cascaded second order nonlinear process wh ere a pump laser at wavelength of 1.55 $mu$m is first doubled in frequency by second harmonic generation and subsequently downconverted around the same spectral region. Pairs are detected at a rate of 42 per second with a coincidence to accidental ratio of 0.7. This cascaded pair generation process is similar to four-wave-mixing where two pump photons annihilate and create a correlated photon pair.
We experimentally analyze a Bessel beam produced with a conical mirror, paying particular attention to its superluminal and diffraction-free properties. We spatially characterized the beam in the radial and on-axis dimensions, and verified that the c entral peak does not spread over a propagation distance of 73 cm. In addition, we measured the superluminal phase and group velocities of the beam in free space. Both spatial and temporal measurements show good agreement with the theoretical predictions.
The technologies of quantum information and quantum control are rapidly improving, but full exploitation of their capabilities requires complete characterization and assessment of processes that occur within quantum devices. We present a method for c haracterizing, with arbitrarily high accuracy, any quantum optical process. Our protocol recovers complete knowledge of the process by studying, via homodyne tomography, its effect on a set of coherent states, i.e. classical fields produced by common laser sources. We demonstrate the capability of our protocol by evaluating and experimentally verifying the effect of a test process on squeezed vacuum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا