ترغب بنشر مسار تعليمي؟ اضغط هنا

The avalanche mechanism has been used to relate Efimov trimer states to certain enhanced atom loss features observed in ultracold atom gas experiments. These atom loss features are argued to be a signature of resonant atom-molecule scattering that oc curs when an Efimov trimer is degenerate with the atom-molecule scattering threshold. However, observation of these atom loss features has yet to be combined with the direct observation of atom-molecule resonant scattering for any particular atomic species. In addition, recent Monte-Carlo simulations were unable to reproduce a narrow loss feature. We experimentally search for enhanced atom loss features near an established scattering resonance between 40K87Rb Feshbach molecules and 87Rb atoms. Our measurements of both the three-body recombination rate in a gas of 40K and 87Rb atoms and the ratio of the number loss for the two species do not show any broad loss feature and are therefore inconsistent with theoretical predictions that use the avalanche mechanism.
The geometric (Berry) phase of a two-level system in a dissipative environment is analyzed by using the second-quantized formulation, which provides a unified and gauge-invariant treatment of adiabatic and nonadiabatic phases and is thus applicable t o a quantitative analysis of transitional regions away from ideal adiabaticity. In view of the recent experimental observation of the Berry phase in a superconducting qubit, we illustrate our formulation for a concrete adiabatic case in the Ohmic dissipation. The correction to the total phase together with the geometry-dependent dephasing time is given in a transparent way. The behavior of the geometric phase away from ideal adiabaticity is also analyzed in some detail.
We investigate the nonlocal property of the fractional statistics in Kitaevs toric code model. To this end, we construct the Greenberger-Horne-Zeilinger paradox which builds a direct conflict between the statistics and local realism. It turns out tha t the fractional statistics in the model is purely a quantum effect and independent of any classical theory.We also discuss a feasible experimental scheme using anyonic interferometry to test this contradiction.
72 - Ming-Guang Hu , Kang Xue , 2008
Entanglement is believed to be crucial in macroscopic physical systems for understanding the collective quantum phenomena such as quantum phase transitions. We start from and solve exactly a novel Yang-Baxter spin-1/2 chain model with inhomogeneous a nd anisotropic short-range interactions. For the ground state, we show the behavior of neighboring entanglement in the parameter space and find that the inhomogeneous coupling strengths affect entanglement in a distinctive way from the homogeneous case, but this would not affect the coincidence between entanglement and quantum criticality.
We mainly explore the linear algebraic structure like SU(2) or SU(1,1) of the shift operators for some one-dimensional exactly solvable potentials in this paper. During such process, a set of method based on original diagonalizing technique is presen ted to construct those suitable operator elements, J0, J_pm that satisfy SU(2) or SU(1,1) algebra. At last, the similarity between radial problem and one-dimensional potentials encourages us to deal with the radial problem in the same way.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا