ترغب بنشر مسار تعليمي؟ اضغط هنا

Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA has reached unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window for probing molecular warm gas (~50-1000 K). On the other hand, the software SHAPE has emerged in the past few years as a standard tool for determining the morphology and velocity field of different kinds of gaseous emission nebulae via spatio-kinematical modelling. SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Being aware of the growing importance of the development of tools for simplifying the analyses of molecular data, we introduce shapemol, a complement to SHAPE, with which we intend to fill the so-far under-developed molecular niche. shapemol enables user-friendly, spatio-kinematic modelling with accurate non-LTE calculations of excitation and radiative transfer in CO lines. It allows radiative transfer solving in the 12CO and 13CO J=1-0 to J=17-16 lines, but its implementation permits easily extending the code to different molecular species. shapemol allows easily generating synthetic maps and line profiles to match against interferometric or single-dish observations. We fully describe shapemol and discuss its limitations and the sources of uncertainty to be expected in the final synthetic profiles or maps. As an example of the power and versatility of shapemol, we build a model of the molecular envelope of the planetary nebula NGC 6302 and compare it with 12CO and 13CO J=2-1 interferometric maps from SMA and high-J transitions from Herschel/HIFI. We find the molecular envelope to have a complex, broken ring-like structure with an inner, hotter region and several fingers and high-velocity blobs, emerging outwards from the plane of the ring. We derive a mass of 0.11 Msun for the molecular envelope.
The link between the shaping of bipolar planetary nebulae and their central stars is still poorly understood. The kinematics and shaping of the multipolar nebula M 1-75 are hereby investigated, and the location and nature of its central star are brie fly discussed. Fabry-Perot data from GHaFAS on the WHT sampling the Doppler shift of the [N II] 658.3 nm line are used to study the dynamics of the nebula, by means of a detailed 3-D spatio-kinematical model. Multi-wavelength images and spectra from the WFC and IDS on the INT, and from ACAM on the WHT, allowed us to constrain the parameters of the central star. The two pairs of lobes, angularly separated by ~22 degrees, were ejected simultaneously approx. ~3500-5000 years ago, at the adopted distance range from 3.5 to 5.0 kpc. The larger lobes show evidence of a slight degree of point symmetry. The shaping of the nebula could be explained by wind interaction in a system consisting of a post-AGB star surrounded by a disc warped by radiative instabilities. This requires the system to be a close binary or a single star which engulfed a planet as it died. On the other hand, we present broad- and narrow-band images and a low S/N optical spectrum of the highly-reddened, previously unnoticed star which is likely the nebular progenitor. Its estimated V-I colour allows us to derive a rough estimate of the parameters and nature of the central star.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا