ترغب بنشر مسار تعليمي؟ اضغط هنا

Aims. Optically thin plasmas may deviate from thermal equilibrium and thus, electrons (and ions) are no longer described by the Maxwellian distribution. Instead they can be described by $kappa$-distributions. The free-free spectrum and radiative loss es depend on the temperature-averaged (over the electrons distribution) and total Gaunt factors, respectively. Thus, there is a need to calculate and make available these factors to be used by any software that deals with plasma emission. Methods. We recalculated the free-free Gaunt factor for a wide range of energies and frequencies using hypergeometric functions of complex arguments and the Clenshaw recurrence formula technique combined with approximations whenever the difference between the initial and final electron energies is smaller than $10^{-10}$ in units of $z^2Ry$. We used double and quadruple precisions. The temperature- averaged and total Gaunt factors calculations make use of the Gauss-Laguerre integration with 128 nodes. Results. The temperature-averaged and total Gaunt factors depend on the $kappa$ parameter, which shows increasing deviations (with respect to the results obtained with the use of the Maxwellian distribution) with decreasing $kappa$. Tables of these Gaunt factors are provided.
Until recently the dynamical evolution of the interstellar medium (ISM) was simulated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.
109 - M. A. de Avillez 2012
Using three-dimensional non-equilibrium ionization (NEI) hydrodynamical simulation of the interstellar medium (ISM), we study the electron density, $n_{e}$, in the Galactic disk and compare it with the values derived from dispersion measures towards pulsars with known distances located up to 200 pc on either side of the Galactic midplane. The simulation results, consistent with observations, can be summarized as follows: (i) the DMs in the simulated disk lie between the maximum and minimum observed values, (ii) the log <n_e> derived from lines of sight crossing the simulated disk follows a Gaussian distribution centered at mu=-1.4 with a dispersion sigma=0.21, thus, the Galactic midplane <n_e>=0.04pm 0.01$ cm$^{-3}$, (iii) the highest electron concentration by mass (up to 80%) is in the thermally unstable regime (200<T<10^{3.9} K), (iv) the volume occupation fraction of the warm ionized medium is 4.9-6%, and (v) the electrons have a clumpy distribution along the lines of sight.
Aims. We present the first high-resolution non-equilibrium ionization simulation of the joint evolution of the Local Bubble (LB) and Loop I superbubbles in the turbulent supernova-driven interstellar medium (ISM). The time variation and spatial distr ibution of the Li-like ions Civ, Nv, and Ovi inside the LB are studied in detail. Methods. This work uses the parallel adaptive mesh refinement code EAF-PAMR coupled to the newly developed atomic and molecular plasma emission module E(A+M)PEC, featuring the time-dependent calculation of the ionization structure of H through Fe, using the latest revision of solar abundances. The finest AMR resolution is 1 pc within a grid that covers a representative patch of the Galactic disk (with an area of 1 kpc^2 in the midplane) and halo (extending up to 10 kpc above and below the midplane). Results. The evolution age of the LB is derived by the match between the simulated and observed absorption features of the Li-like ions Civ, Nv, and Ovi . The modeled LB current evolution time is bracketed between 0.5 and 0.8 Myr since the last supernova reheated the cavity in order to have N(Ovi) < 8 times 10^12 cm-2, log[N(Civ) /N(Ovi) ] < -0.9 and log[N(Nv) /N(Ovi) ] < -1 inside the simulated LB cavity, as found in Copernicus, IUE, GHRS-IST and FUSE observations.
The ISM, powered by SNe, is turbulent and permeated by a magnetic field (with a mean and a turbulent component). It constitutes a frothy medium that is mostly out of equilibrium and is ram pressure dominated on most of the temperature ranges, except for T< 200 K and T> 1E6 K, where magnetic and thermal pressures dominate, respectively. Such lack of equilibrium is also imposed by the feedback of the radiative processes into the ISM flow. Many models of the ISM or isolated phenomena, such as bubbles, superbubbles, clouds evolution, etc., take for granted that the flow is in the so-called collisional ionization equilibrium (CIE). However, recombination time scales of most of the ions below 1E6 K are longer than the cooling time scale. This implies that the recombination lags behind and the plasma is overionized while it cools. As a consequence cooling deviates from CIE. This has severe implications on the evolution of the ISM flow and its ionization structure. Here, besides reviewing several models of the ISM, including bubbles and superbubbles, the validity of the CIE approximation is discussed, and a presentation of recent developments in modeling the ISM by taking into account the time-dependent ionization structure of the flow in a full-blown numerical 3D high resolution simulation is presented.
High-resolution non-ideal magnetohydrodynamical simulations of the turbulent magnetized ISM, powered by supernovae types Ia and II at Galactic rate, including self-gravity and non-equilibriuim ionization (NEI), taking into account the time evolution of the ionization structure of H, He, C, N, O, Ne, Mg, Si, S and Fe, were carried out. These runs cover a wide range (from kpc to sub-parsec) of scales, providing resolution independent information on the injection scale, extended self-similarity and the fractal dmension of the most dissipative structures.
We study, by means of adaptive mesh refinement hydro- and magnetohydrodynamical simulations that cover a wide range of scales (from kpc to sub-parsec), the dimension of the most dissipative structures and the injection scale of the turbulent interste llar gas, which we find to be about 75 pc, in agreement with observations. This is however smaller than the average size of superbubbles, but consistent with significant density and pressure changes in the ISM, which leads to the break-up of bubbles locally and hence to injection of turbulence. The scalings of the structure functions are consistent with log-Poisson statistics of supersonic turbulence where energy is dissipated mainly through shocks. Our simulations are different from previous ones by other authors as (i) we do not assume an isothermal gas, but have temperature variations of several orders of magnitude and (ii) we have no artificial forcing of the fluid with some ad hoc Fourier spectrum, but drive turbulence by stellar explosions at the Galactic rate, self-regulated by density and temperature thresholds imposed on the ISM gas.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا