ترغب بنشر مسار تعليمي؟ اضغط هنا

It has been believed that spirals in pure stellar disks, especially the ones spontaneously formed, decay in several galactic rotations due to the increase of stellar velocity dispersions. Therefore, some cooling mechanism, for example dissipational e ffects of the interstellar medium, was assumed to be necessary to keep the spiral arms. Here we show that stellar disks can maintain spiral features for several tens of rotations without the help of cooling, using a series of high-resolution three-dimensional $N$-body simulations of pure stellar disks. We found that if the number of particles is sufficiently large, e.g., $3times 10^6$, multi-arm spirals developed in an isolated disk can survive for more than 10 Gyrs. We confirmed that there is a self-regulating mechanism that maintains the amplitude of the spiral arms. Spiral arms increase Toomres $Q$ of the disk, and the heating rate correlates with the squared amplitude of the spirals. Since the amplitude itself is limited by the value of $Q$, this makes the dynamical heating less effective in the later phase of evolution. A simple analytical argument suggests that the heating is caused by gravitational scattering of stars by spiral arms, and that the self-regulating mechanism in pure-stellar disks can effectively maintain spiral arms on a cosmological timescale. In the case of a smaller number of particles, e.g., $3times 10^5$, spiral arms grow faster in the beginning of the simulation (while $Q$ is small) and they cause a rapid increase of $Q$. As a result, the spiral arms become faint in several Gyrs.
We performed, for the first time, the simulation of spiral-in of a star cluster formed close to the Galactic center (GC) using a fully self-consistent $N$-body model. In our model, the central super-massive black hole (SMBH) is surrounded by stars an d the star cluster. Not only are the orbits of stars and the cluster stars integrated self-consistently, but the stellar evolution, collisions and merging of the cluster stars are also included. We found that an intermediate-mass black hole (IMBH) is formed in the star cluster and stars escaped from the cluster are captured into a 1:1 mean motion resonance with the IMBH. These Trojan stars are brought close to the SMBH by the IMBH, which spirals into the GC due to the dynamical friction. Our results show that, once the IMBH is formed, it brings the massive stars to the vicinity of the central SMBH even after the star cluster itself is disrupted. Stars carried by the IMBH form a disk similar to the observed disks and the core of the cluster including the IMBH has properties similar to those of IRS13E, which is a compact assembly of several young stars.
119 - M. Fujii , M. Iwasawa , Y. Funato 2008
We have performed fully self-consistent $N$-body simulations of star clusters near the Galactic center (GC). Such simulations have not been performed because it is difficult to perform fast and accurate simulations of such systems using conventional methods. We used the Bridge code, which integrates the parent galaxy using the tree algorithm and the star cluster using the fourth-order Hermite scheme with individual timestep. The interaction between the parent galaxy and the star cluster is calculate with the tree algorithm. Therefore, the Bridge code can handle both the orbital and internal evolutions of star clusters correctly at the same time. We investigated the evolution of star clusters using the Bridge code and compared the results with previous studies. We found that 1) the inspiral timescale of the star clusters is shorter than that obtained with traditional simulations, in which the orbital evolution of star clusters is calculated analytically using the dynamical friction formula and 2) the core collapse of the star cluster increases the core density and help the cluster survive. The initial conditions of star clusters is not so severe as previously suggested.
175 - M. Fujii , M. Iwasawa , Y. Funato 2007
We developed a new direct-tree hybrid N-body algorithm for fully self-consistent N-body simulations of star clusters in their parent galaxies. In such simulations, star clusters need high accuracy, while galaxies need a fast scheme because of the lar ge number of the particles required to model it. In our new algorithm, the internal motion of the star cluster is calculated accurately using the direct Hermite scheme with individual timesteps and all other motions are calculated using the tree code with second-order leapfrog integrator. The direct and tree schemes are combined using an extension of the mixed variable symplectic (MVS) scheme. Thus, the Hamiltonian corresponding to everything other than the internal motion of the star cluster is integrated with the leapfrog, which is symplectic. Using this algorithm, we performed fully self-consistent N-body simulations of star clusters in their parent galaxy. The internal and orbital evolutions of the star cluster agreed well with those obtained using the direct scheme. We also performed fully self-consistent N-body simulation for large-N models ($N=2times 10^6$). In this case, the calculation speed was seven times faster than what would be if the direct scheme was used.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا