ﻻ يوجد ملخص باللغة العربية
We developed a new direct-tree hybrid N-body algorithm for fully self-consistent N-body simulations of star clusters in their parent galaxies. In such simulations, star clusters need high accuracy, while galaxies need a fast scheme because of the large number of the particles required to model it. In our new algorithm, the internal motion of the star cluster is calculated accurately using the direct Hermite scheme with individual timesteps and all other motions are calculated using the tree code with second-order leapfrog integrator. The direct and tree schemes are combined using an extension of the mixed variable symplectic (MVS) scheme. Thus, the Hamiltonian corresponding to everything other than the internal motion of the star cluster is integrated with the leapfrog, which is symplectic. Using this algorithm, we performed fully self-consistent N-body simulations of star clusters in their parent galaxy. The internal and orbital evolutions of the star cluster agreed well with those obtained using the direct scheme. We also performed fully self-consistent N-body simulation for large-N models ($N=2times 10^6$). In this case, the calculation speed was seven times faster than what would be if the direct scheme was used.
We have performed fully self-consistent $N$-body simulations of star clusters near the Galactic center (GC). Such simulations have not been performed because it is difficult to perform fast and accurate simulations of such systems using conventional
Star clusters form via clustering star formation inside molecular clouds. In order to understand the dynamical evolution of star clusters in their early phase, in which star clusters are still embedded in their surrounding gas, we need an accurate in
Two aspects of our recent N-body studies of star clusters are presented: (1) What impact does mass segregation and selective mass loss have on integrated photometry? (2) How well compare results from N-body simulations using NBODY4 and STARLAB/KIRA?
We use direct $N$-body calculations to study the evolution of the unusually extended outer halo globular cluster Palomar 4 (Pal~4) over its entire lifetime in order to reproduce its observed mass, half-light radius, velocity dispersion and mass funct
The fraction of stars in binary systems within star clusters is important for their evolution, but what proportion of binaries form by dynamical processes after initial stellar accretion remains unknown. In previous work, we showed that dynamical int