ترغب بنشر مسار تعليمي؟ اضغط هنا

100 - Michal v{S}umbera 2013
Measurements of three-dimensional correlation functions of like-sign low transverse momentum kaon pairs from Au+Au collisions at top RHIC energy $sqrt s_{NN}$=200 GeV are presented. The extracted kaon source function is narrower than the pion one and does not have the long tail along the pair transverse momentum direction. This indicates a much smaller role of long-lived resonance decays and/or of the emission duration on kaon emission. Three-dimensional Gaussian shape of the kaon source function can be adequately reproduced by Therminator simulations with resonance contributions taken into account. Comparison to pion data at the same energy reveals that the kaon Gaussian radii in the outward and sideward directions scale with the transverse mass $m_T$. In the longitudinal direction, unlike at lower SPS energies, the Gaussian radii do not seem to follow the exact $m_T$ scaling between kaons and pions.
Results from the Beam Energy Scan (BES) program conducted by STAR experiment at RHIC are presented. The data from Phase-I of the BES program collected in Au+Au collisions at center-of-mass energies ($sqrt{s_{NN}}$) of 7.7, 11.5, 19.6, 27, and 39 GeV cover a wide range of baryon chemical potential $mu_{B}$ (100--400 MeV) in the QCD phase diagram. Several STAR results from the BES Phase-I related to turn-off of strongly interacting quark--gluon plasma (sQGP) signatures and signals of QCD phase boundary are reported. In addition to this, an outlook is presented for the future BES Phase-II program and a possible fixed target program at STAR.
70 - Michal Sumbera 2013
Results from the Beam Energy Scan (BES) program conducted recently by STAR experiment at RHIC are presented. The data from Phase-I of the BES program collected in Au+Au collisions at center-of-mass energies (sqrt{s_{NN}}) of 7.7, 11.5, 19.6, 27, and 39 GeV cover a wide range of baryon chemical potential ?mu_B (100-400 MeV) in the QCD phase diagram. Several STAR results from the BES Phase-I related to turn-off of strongly inter- acting quark-gluon plasma (sQGP) signatures and signals of QCD phase boundary are reported. In addition to this, an outlook is presented for the future BES Phase-II program and a possible fixed target program at STAR.
Recent soft physics results from collisions of ultra-relativistic nuclei at Relativistic Heavy Ion Collider (RHIC) operating at Brookhaven National Laboratory (BNL) are reviewed. Topics discussed cover the Beam Energy Scan program with some emphasis on anisotropic particle flow.
We discuss a common feature of all known reactions on nuclear targets - a significant suppression at large x. Simple interpretation of this effect is based on energy conservation restrictions in initial state parton rescatterings. Using the light-con e dipole approach this mechanism is shown to control variety of processes on nuclear targets: high-pT particle production at different rapidities as well as direct and virtual (Drell-Yan) photon production. We demonstrate universality and wide applicability of this mechanism allowing to describe large-x effects also at SPS and FNAL energies too low for the onset of coherent effects or shadowing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا