ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft Physics at RHIC

117   0   0.0 ( 0 )
 نشر من قبل Michal Sumbera
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent soft physics results from collisions of ultra-relativistic nuclei at Relativistic Heavy Ion Collider (RHIC) operating at Brookhaven National Laboratory (BNL) are reviewed. Topics discussed cover the Beam Energy Scan program with some emphasis on anisotropic particle flow.



قيم البحث

اقرأ أيضاً

174 - Peter Steinberg 2009
The RHIC program was intended to identify and study the quark-gluon plasma formed in the collision of heavy nuclei. The discovery of the perfect liquid is an essential step towards the understanding of the medium formed in these collisions. Much of d ata relevant to this was provided by the study of soft observables, which involve many particles of low momentum produced in nearly every event, rather than high momentum particles produced in rare events. The main results related to soft physics at RHIC are discussed, as well as their implications for the physics of the LHC heavy ion program.
91 - J. Kiryluk 2004
STAR collected data in proton-proton collisions at sqrt(s)=200 GeV with transverse and longitudinal beam polarizations during the initial running periods in 2002--2004 at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. Results on the single transverse spin asymmetries in the production of high energy forward neutral pions and of forward charged hadrons will be presented. Data have been obtained for double longitudinal asymmetries in inclusive jet production in 2003 and 2004. These data provide sensitivity to the polarization of gluons in the proton. In the future, we aim to determine the gluon polarization over a wide kinematic range using coincidences of direct photons and jets. Furthermore, we aim to determine the polarizations of the u, bar(u), d and bar(d) quarks in the proton by measuring single longitudinal spin asymmetries in the production of weak bosons at sqrt(s) = 500$ GeV.
189 - R. Debbe 2006
The RHIC high energy collision of species ranging from p+p, p(d)+A to A+A provide access to the {small-x} component of the hadron wave function. The RHIC program has brought renewed interest in that subject with its ability to reach values of the par ton momentum fraction smaller than 0.01 with studies of particle production at high rapidity. Furthermore, the use of heavy nuclei in the p(d)+A collisions facilitates the study of saturation effects in the gluonic component of the nuclei because the appropriate scale for that regime grows as A^1/3. We review the experimental results of the RHIC program that have relevance to {small-x} emphasizing the physics extracted from d+Au collisions and their comparison to p+p collisions at the same energy.
155 - Susumu X. Oda 2008
The J/psi is considered to be among the most important probes for the deconfined quark gluon plasma (QGP) created by relativistic heavy ion collisions. While the J/psi is thought to dissociate in the QGP by Debye color screening, there are competing effects from cold nuclear matter (CNM), feed-downs from excited charmonia (chi_c and psi) and bottom quarks, and regeneration from uncorrelated charm quarks. Measurements that can provide information to disentangle these effects are presented in this paper.
We report the first measurements of the kurtosis (kappa), skewness (S) and variance (sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (mu_B) between 200 - 20 MeV. Our measurements of the products kappa sigma^2 and S sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the sqrt(s_NN) dependence of kappa sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for mu_B below 200 MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا