ترغب بنشر مسار تعليمي؟ اضغط هنا

136 - M. Hanasz 2008
We present new developments on the Cosmic--Ray driven, galactic dynamo, modeled by means of direct, resistive CR--MHD simulations, performed with ZEUS and PIERNIK codes. The dynamo action, leading to the amplification of large--scale galactic magneti c fields on galactic rotation timescales, appears as a result of galactic differential rotation, buoyancy of the cosmic ray component and resistive dissipation of small--scale turbulent magnetic fields. Our new results include demonstration of the global--galactic dynamo action driven by Cosmic Rays supplied in supernova remnants. An essential outcome of the new series of global galactic dynamo models is the equipartition of the gas turbulent energy with magnetic field energy and cosmic ray energy, in saturated states of the dynamo on large galactic scales.
We present a parameter study of the magnetohydrodynamical dynamo driven by cosmic rays in the interstellar medium (ISM) focusing on the efficiency of magnetic field amplification and the issue of energy equipartition between magnetic, kinetic and cos mic ray (CR) energies. We perform numerical CR-MHD simulations of the ISM using the extended version of ZEUS-3D code in the shearing box approximation and taking into account the presence of Ohmic resistivity, tidal forces and vertical disk gravity. CRs are supplied in randomly distributed supernova (SN) remnants and are described by the diffusion-advection equation, which incorporates an anisotropic diffusion tensor. The azimuthal magnetic flux and total magnetic energy are amplified depending on a particular choice of model parameters. We find that the most favorable conditions for magnetic field amplification correspond to magnetic diffusivity of the order of $3times 10^{25} cm^2s^{-1}$, SN rates close to those observed in the Milky Way, periodic SN activity corresponding to spiral arms, and highly anisotropic and field-aligned CR diffusion. The rate of magnetic field amplification is relatively insensitive to the magnitude of SN rates in a rage of spanning 10% up to 100% of realistic values. The timescale of magnetic field amplification in the most favorable conditions is 150 Myr, at galactocentric radius equal to 5 kpc. The final magnetic field energies fluctuate near equipartition with the gas kinetic energy. In all models CR energy exceeds the equipartition values by a least an order of magnitude, in contrary to the expected equipartition. We suggest that the excess of cosmic rays can be attributed to the fact that the shearing-box does not permit cosmic rays to leave the system along the horizontal magnetic field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا