ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic ray driven dynamo in galactic disks. A parameter study

159   0   0.0 ( 0 )
 نشر من قبل Michal Hanasz
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a parameter study of the magnetohydrodynamical dynamo driven by cosmic rays in the interstellar medium (ISM) focusing on the efficiency of magnetic field amplification and the issue of energy equipartition between magnetic, kinetic and cosmic ray (CR) energies. We perform numerical CR-MHD simulations of the ISM using the extended version of ZEUS-3D code in the shearing box approximation and taking into account the presence of Ohmic resistivity, tidal forces and vertical disk gravity. CRs are supplied in randomly distributed supernova (SN) remnants and are described by the diffusion-advection equation, which incorporates an anisotropic diffusion tensor. The azimuthal magnetic flux and total magnetic energy are amplified depending on a particular choice of model parameters. We find that the most favorable conditions for magnetic field amplification correspond to magnetic diffusivity of the order of $3times 10^{25} cm^2s^{-1}$, SN rates close to those observed in the Milky Way, periodic SN activity corresponding to spiral arms, and highly anisotropic and field-aligned CR diffusion. The rate of magnetic field amplification is relatively insensitive to the magnitude of SN rates in a rage of spanning 10% up to 100% of realistic values. The timescale of magnetic field amplification in the most favorable conditions is 150 Myr, at galactocentric radius equal to 5 kpc. The final magnetic field energies fluctuate near equipartition with the gas kinetic energy. In all models CR energy exceeds the equipartition values by a least an order of magnitude, in contrary to the expected equipartition. We suggest that the excess of cosmic rays can be attributed to the fact that the shearing-box does not permit cosmic rays to leave the system along the horizontal magnetic field.



قيم البحث

اقرأ أيضاً

210 - M. Hanasz 2008
We present new developments on the Cosmic--Ray driven, galactic dynamo, modeled by means of direct, resistive CR--MHD simulations, performed with ZEUS and PIERNIK codes. The dynamo action, leading to the amplification of large--scale galactic magneti c fields on galactic rotation timescales, appears as a result of galactic differential rotation, buoyancy of the cosmic ray component and resistive dissipation of small--scale turbulent magnetic fields. Our new results include demonstration of the global--galactic dynamo action driven by Cosmic Rays supplied in supernova remnants. An essential outcome of the new series of global galactic dynamo models is the equipartition of the gas turbulent energy with magnetic field energy and cosmic ray energy, in saturated states of the dynamo on large galactic scales.
286 - S. Recchia , P. Blasi , G. Morlino 2016
The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfven waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfven waves.
Supernovae are known to be the dominant energy source for driving turbulence in the interstellar medium. Yet, their effect on magnetic field amplification in spiral galaxies is still poorly understood. Previous analytical models, based on the evoluti on of isolated, non-interacting supernova remnants, predicted a dominant vertical pumping that would render dynamo action improbable. In the present work, we address the issue of vertical transport, which is thought to be the key process that inhibits dynamo action in the galactic context. We aim to demonstrate that supernova driving is a powerful mechanism to amplify galactic magnetic fields. We conduct direct numerical simulations in the framework of resistive magnetohydrodynamics. Our local box model of the interstellar medium comprises optically-thin radiative cooling, an external gravitational potential, and background shear. Dynamo coefficients for mean-field models are measured by means of passive test fields. Our simulations show that supernova-driven turbulence in conjunction with shear leads to an exponential amplification of the mean magnetic field. We found turbulent pumping to be directed inward and approximately balanced by a galactic wind.
144 - S. Recchia , P. Blasi , G. Morlino 2017
Cosmic Rays escaping the Galaxy exert a force on the interstellar medium directed away from the Galactic disk. If this force is larger than the gravitational pull due to the mass embedded in the Galaxy, then galactic winds may be launched. Such outfl ows may have important implications for the history of star formation of the host galaxy, and in turn affect in a crucial way the transport of cosmic rays, both due to advection with the wind and to the excitation of waves by the same cosmic rays, through streaming instability. The possibility to launch cosmic ray induced winds and the properties of such winds depend on environmental conditions, such as the density and temperature of the plasma at the base of the wind and the gravitational potential, especially the one contributed by the dark matter halo. In this paper we make a critical assessment of the possibility to launch cosmic ray induced winds for a Milky-Way-like galaxy and how the properties of the wind depend upon the conditions at the base of the wind. Special attention is devoted to the implications of different conditions for wind launching on the spectrum of cosmic rays observed at different locations in the disc of the galaxy. We also comment on how cosmic ray induced winds compare with recent observations of Oxygen absorption lines in quasar spectra and emission lines from blank-sky, as measured by XMM-Newton/EPIC-MOS.
Cosmic ray transport on galactic scales depends on the detailed properties of the magnetized, multiphase interstellar medium (ISM). In this work, we post-process a high-resolution TIGRESS magnetohydrodynamic simulation modeling a local galactic disk patch with a two-moment fluid algorithm for cosmic ray transport. We consider a variety of prescriptions for the cosmic rays, from a simple purely diffusive formalism with constant scattering coefficient, to a physically-motivated model in which the scattering coefficient is set by critical balance between streaming-driven Alfven wave excitation and damping mediated by local gas properties. We separately focus on cosmic rays with kinetic energies of $sim 1$ GeV (high-energy) and $sim 30$~MeV (low-energy), respectively important for ISM dynamics and chemistry. We find that simultaneously accounting for advection, streaming, and diffusion of cosmic rays is crucial for properly modeling their transport. Advection dominates in the high-velocity, low-density, hot phase, while diffusion and streaming are more important in higher density, cooler phases. Our physically-motivated model shows that there is no single diffusivity for cosmic-ray transport: the scattering coefficient varies by four or more orders of magnitude, maximal at density $n_mathrm{H} sim 0.01, mathrm{cm}^{-3}$. Ion-neutral damping of Alfven waves results in strong diffusion and nearly uniform cosmic ray pressure within most of the mass of the ISM. However, cosmic rays are trapped near the disk midplane by the higher scattering rate in the surrounding lower-density, higher-ionization gas. The transport of high-energy cosmic rays differs from that of low-energy cosmic rays, with less effective diffusion and greater energy losses for the latter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا