ترغب بنشر مسار تعليمي؟ اضغط هنا

62 - M. Bejger 2012
The discovery of a 2 Msun neutron star provided a robust constraint for the theory of exotic dense matter, bringing into question the existence of strange baryons in the interiors of neutron stars. Although many theories fail to reproduce this observ ational result, several equations of state containing hyperons are consistent with it. We study global properties of stars using equations of state containing hyperons, and compare them to those without hyperons to find similarities, differences, and limits that can be compared with the astrophysical observations. Rotating, axisymmetric, and stationary stellar configurations in general relativity are obtained, and their global parameters are studied. Approximate formulae describing the behavior of the maximum and minimum stellar mass, compactness, surface redshifts, and moments of inertia as functions of spin frequency are provided. We also study the thin disk accretion and compare the spin-up evolution of stars with different moments of inertia.
Recent measurement of a high millisecond pulsar mass (PSR J1614-2230, 1.97+-0.04 Msun) compared with the low mass of PSR J0751+1807 (1.26+-0.14 Msun) indicates a large span of masses of recycled pulsars and suggests a broad range of neutron stars mas ses at birth. We aim at reconstructing the pre-accretion masses for these pulsars while taking into account interaction of the magnetic field with a thin accretion disk, magnetic field decay and relativistic 2D solutions for stellar configurations for a set of equations of state. We briefly discuss the evolutionary scenarios leading to the formation of these neutron stars and study the influence of the equation of state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا